期刊文献+

加速PageRank计算的方法研究

Study of method about accelerating PageRank calculation
下载PDF
导出
摘要 网络矩阵的规模以及稀疏性导致了对求解方法的限制,并使得幂法占据了主导地位。但是幂法的收敛速度是缓慢的,尤其在网络规模的矩阵上运行的每次幂法迭代的时间和成本是高昂的。因此,其他加速PageRank计算的方法逐渐得到研究者的重视。文中首先对布尔搜索引擎、向量空间模型引擎、概率模型搜索引擎、元搜索引擎等基本搜索引擎模型进行综述,总结各基本搜索引擎模型的特征和优缺点。文中立足于加速PageRank计算的方法研究,并总结出自适应幂法、外插方法、BlockRank聚合方法的特征和优缺点。 Scale and sparse network matrix led to restrictions on solving method, and makes the power method to occupy the dominant position. But convergence speed is slow, especially in the network every time power method to run on the size of the matrix iterative time and cost is high. Therefore, other accelerate Page Rank calculation method gradually got the attention of the researchers. This paper summarizes the basic characteristics and advantages and disadvantages of search engine model,including the Boolean search engine, vector space model engines, search engines, metasearch engines. Finally, this paper analyzes the accelerate the Page Rank calculation method of study, Summed up the characteristics and advantages and disadvantages including adaptive power method, extrapolation method, polymerization method.
出处 《电子设计工程》 2016年第19期4-6,10,共4页 Electronic Design Engineering
基金 江苏省社科联研究基金(201035) 中央高校基本科研业务费项目(2010B10714)
关键词 PAGERANK 自适应幂法 外插方法 聚合方法 PageRank adaptive power law extrapolation method polymerization methods
  • 相关文献

参考文献15

  • 1方永锋,陈建军.多状态可修复k/n系统的随时间响应可靠性研究[J].高技术通讯,2016,26(2):195-199. 被引量:4
  • 2宋涛,王星.基于二次聚类和隐马尔可夫链的持卡消费行为预测[J].计算机应用,2016,36(7):1904-1908. 被引量:1
  • 3Gerard Sahon and Chris Buckley. Introduction to Modern Information Retrieval[M]. McGraw-Hill, New York, 2003.
  • 4Susan T. Dumais. Improving the retrieval of information from external sources [C]// Behavior Research Methods, Instru ments and Computers, 1991 : 221-246.
  • 5Carl D. Meyer. Matrix Analysis and Applied Linear Algebra[C]// SIAM, Philadelphia, 2000.
  • 6Michael W. Berry and Murray Browne. Understanding Search Engines: Mathematical Modeling and Text Retrieval [J]. SIAM, Philadelphia, 2an edition,2005(16):78-93.
  • 7Paolo Boldi and Sebastiano Vigna. The WebGraph framework II. Codes for the World Wide Web [C]// Technical Report 286-03, Universita di Milano, Dipartimento diScienze dell' Informazione Engineering, 2013.
  • 8Matthew Richardson, Petro Domingos. The intelligent surfer: Probabilistic combination of link and content information in PageRank [J]. Advances in Neural Information Processing Systems, 2012 (14): 1398-1399.
  • 9Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, et al. Extrapolation methods for accelerating PageRank computations[C]//In Twelfth International World Wide Web Conference, New York, 2003.
  • 10Grace E. Cho and Carl D. Meyer. Aggregation/disaggregation errors for nearly uncoupled Markov chains [R]. Technical report, NCSU Tech. Report, 2013.

二级参考文献21

  • 1刘建,吴翊,谭璐.对Bootstrap方法的自助抽样的改进[J].数学理论与应用,2006,26(1):69-72. 被引量:31
  • 2KharHengChoo,JooChuanTong:,LouxinZhang.Recent Applications of Hidden Markov Models in Computational Biology[J].Genomics, Proteomics & Bioinformatics,2004,2(2):84-96. 被引量:6
  • 3Si S B, Dui H Y, Cai Z Q, et al. Integrated importance measure of multi-state systems for maintenance processes. IEEE Transactions on Reliability, 2012, 61 (2) : 266-273.
  • 4Lisnianski A, Levitin G. Multi-State System Reliability. New York: World Scientific, 2003.
  • 5Gregory L. A universal generating function approach for the analysis of multi-state systems with dependent ele- ments. Reliability Engineering and System Safety, 2004, 84(3) : 285-292.
  • 6Fang Y F, Tao W L, Tee K F. Reliability analysis of re- pairable k-out-n system from time response under several times stochastic shocks. Smart Structures and Systems, 2014, 14(4) : 559-567.
  • 7Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. Beijing: Spring- Verlag, 1999.
  • 8Linmios N, Oprian G. Semi-Markov Processes and Relia- bility in Statistics for Industry and Technology. Boston: Birkhauser, 2001.
  • 9Barbu V, Limnios N. Semi-Markov Chain and Hidden Semi-Markov Models toward Applications in Lecture Notes in Statistic. New York : Springer-verlay, 2008.
  • 10Barbu V, Limnios N. Discrete Time Semi-Markov Proces- ses for Reliability and Survival Analysis-A Nonparametric Approach :, Parametric and Semi-Parametric Models with Applications to Reliability, Survival Analysis and Quality of Life. Boston: Statistics for Industry and Technology , 2OO4.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部