期刊文献+

基于GPU的并行条件模拟算法及其在储量估算中的应用

The parallel conditional simulation algorithm based on GPU and its application in reserve estimation
下载PDF
导出
摘要 条件模拟是一种计算非常耗时的高精度三维插值算法。针对串行条件模拟算法计算时间过长的问题,提出基于GPU的并行条件模拟算法,并进行储量估算。对条件模拟算法进行并行分析,利用GPU的高度并行性,构建CUDA通用计算开发环境,实现串行条件模拟算法到并行条件模拟算法的转换,使条件模拟算法的时间复杂度从O(n)降至O(logn)。并对西藏甲玛铜矿进行了储量估算。实验结果表明,在安装普通NVIDIA显卡的计算机以及估算精度不下降的情况下,GPU并行条件模拟的计算效率比CPU串行条件模拟的计算效率提高了60倍以上。 Conditional simulation is a very time-consumlng algorithm of three-dimensional high-precision interpolation. To solve the time-consuming problem in serial conditional simulation algorithm, we proposed a parallel conditional simulation algorithm based on GPU, and applied it to ore reserve estimation. First, this work conducted parallel analysis on the serial conditional simulation algorithm, and constructed CUDA general computing development environment based on the high parallelism of GPU. This realized the transformation of serial conditional simulation algorithm to parallel conditional simulation algorithm, and cut the time complexity of conditional simulation algorithm from O (n) to O (log n). Experimental results of the Jiama copper deposit in Tibet on a computer with NVIDIA graphics demonstrated that, compared with the serial conditional algorithm, the GPU parallel conditional simulation algorithm could improve the efficiency by more than 60 times, without estimation accuracy loss.
出处 《地质学刊》 CAS 2016年第3期507-511,共5页 Journal of Geology
基金 国土资源部公益性行业科研专项经费项目(201511079-02) 国家自然科学基金项目(41272359) 教育部博士点基金项目(20120003110032)
关键词 条件模拟 GPU 并行计算 储量估算 甲玛铜矿 西藏 conditional simulation GPU parallel computing reserve estimation Jiama copper deposit Tibet
  • 相关文献

参考文献15

  • 1白树仁,李涛,宁锦阳.基于MPI的并行Kriging空间降水插值[J].计算技术与自动化,2011,30(1):71-74. 被引量:3
  • 2李星,赵彦超,王国庆.条件模拟的原理及应用[J].地球学报,2003,24(z1):226-228. 被引量:1
  • 3BROOKER P I, 1985. Two-dimensional simulation by turning bands [ J ]. Journal of the Intenaational Association for Mathematical Geology, 17(1) : 81-90.
  • 4BOUDREAULT J P, DUB]~ J S, MARCOTFE D, 2016. Quanti- fication and minimization of uncertainty by geostatistical simulations during the characterization of contaminated sites: 3-D approach to a multi-element contamination [ J ]. Geoderma, 264: 214-226.
  • 5DEAN S O, 1995. Moving averages for Gaussian simulation in two and three dimensions [ J ]. Mathematical Geology, 27 (8) : 939-960.
  • 6HU H D, SHU H, 2015. An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriginginterpolation [ J ]. Computers & Geosciences, 78 (2) : 44-52.
  • 7JUANG K W, CHEN Y S, LEE D Y, 2004. Using sequential in- dicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils [ J ]. Environmental Pollution, 127(2) : 229-238.
  • 8LIANG M, MARCOTFE D, SHAMSIPOUR P, 2016. Simulation of non-linear eoregionalization models by FFTMA [ J ]. Computers & Geosciences, 89 ( 1 ) : 220-231.
  • 9LIU L, WU C L, WANG Z B, 2016. Parallelizatinn of the Krig- ing Algorithm in stochastic simulation with GPU accelerators[ C]//BIAN F, XIE Y C. Geo-Informatics in Resource Management and Sustainable Ecosystem. Berlin: Springer, 197-205. OLIVER D S, 1995.
  • 10Moving averages for Gaussian simulation in two and three dimensions [ J ]. Mathematical Geology, 27 (8) : 939-960.

二级参考文献6

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部