期刊文献+

一类耦合粘弹性波动方程解的有限时间爆破

Finite time blow up for a class of coupled viscoelastic wave equations
下载PDF
导出
摘要 研究一类带有强阻尼项和频散项的耦合粘弹性波动方程的初边值问题,利用凸性分析法,证明了当初值和松弛函数满足一定条件时,该方程的解在有限时间内爆破。 This paper deals with the initial boundary value problem for a class of coupled viscoelastic wave equations with strong damping term and dispersive term. By using convexity method , a finite time blow -up result under certain conditions on the inital data and the relaxation function is given out.
作者 董莉 刘玉龙
出处 《贵州师范大学学报(自然科学版)》 CAS 2016年第5期49-53,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金资助项目(61174082) 国家自然科学青年基金资助项目(61104129)
关键词 粘弹性 耦合波动方程 初边值问题 爆破 viscoelastic coupled wave equation initial boundary value problem blow up
  • 相关文献

参考文献1

二级参考文献20

  • 1Aassila M, Cavalcanti M M, Soriano J A. Asymptotic stability and energy decay rates of solutions of the wave equation with memory in a star-shaped domain. SIAM J Control Optim, 2000, 38(5): 1581-1602.
  • 2Berrimi S, Messaoudi S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal, TMA, 2006, 64:2314-2331.
  • 3i Berrimi S, Messaoudi S A. Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Elect J Diff Eqns, 2004, 88:1-10.
  • 4Cavalcanti M M, Domingos Cavalcanti V N, Ferreira J. Existence and uniform decay of nonlinear vis- coelastic equation with strong damping. Math Meth Appl Sci, 2001, 24:1043-1053.
  • 5Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping. Elect J Diff Eqns, 2002, 44:1-14.
  • 6Cavalcanti M M, Domingos Cavalcanti V N, Prates Filho J S, Soriano J A. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ Integral Equ, 2001, 14(1): 85-116.
  • 7Kawashima S, Shibata Y. Global existence and exponential stability of small solutions to nonlinear vis- coelasticity. Commun Math Phy, 1992, 148:189-208.
  • 8Kirane M, Tatar N-e. A memory type boundary stabilization of a mildy damped wave equation. Elect J Qual Theory Differ Equ, 1999, 6:1-7.
  • 9Messaoudi S A, Tatar N-e. Exponential and polynomial decay for quasilinear viscoelastic equation. Non- linear Anal, TMA, 2007, 68:785-793.
  • 10Messaoudi S A, Tatar N-e. Global existence and asymptotic behavior for a nonlinear viscoelastic problem. Math Sci Research J, 2003, 7(4): 136-149.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部