期刊文献+

一维生物趋化模型的初边值问题

Initial Boundary Value Problem for One Dimensional Biological Chemotaxis Model
下载PDF
导出
摘要 主要研究一维生物趋化模型的初边值问题.在L^2范数充分小,H^2范数不作任何约束的情况下,通过构造一个非负凸熵,再作它的2L能量估计、一阶能量估计、二阶能量估计,从而得到初边值问题解的整体存在性和指数衰减估计. In this paper, we mainly study the initial boundary value problem of one-dimensional biological chemotaxis model. In the case of sufficiently small L-2-norm, and H-2-norm without any constraints, by constructing a nonnegative convex entropy, and then making its L-2-energy estimates, first-order and second-order energy estimates, we get the global existence and exponential decay estimates of solution to the initial boundary value problem.
作者 张映辉 李聪 王易 ZHANG Ying-hui LI Cong WANG Yi(College of Mathemaics, Hunan Institute of Science and Technology Yueyang 414006)
出处 《湖南理工学院学报(自然科学版)》 CAS 2016年第3期4-7,共4页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 湖南省大学生研究性学习和创新性实验计划项目(湘教通[2016]283号) 湖南省教育厅优秀青年项目(14B077)
关键词 生物趋化模型 整体存在性 指数衰减估计 凸熵 初边值问题 biological chemotaxis model global existence exponential decay estimation convex entropy initial boundary value problem
  • 相关文献

参考文献19

  • 1H. G. Othmer, A. Stevens. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks [J]. SIAM J. Appl. Math, 1997(57) 1044-1081.
  • 2H. A. Levine, B. D. Sleeman. A system of reaction diffusion equations arising in the theory of reinforced random walks[J]. SIAM J. Appl. Math, 1997(57) 683-730.
  • 3M. Zhang, C. J. Zhu. Global existence of solutions to a hyperbolic-parabolic system[J]. Proc. Amer. Math. Soc, 2007, 135(4): 1017-1027.
  • 4J. Guo, J. X. Xiao, H. J. Zhao, C. J. Zhu. Global solutions to a hyperbolic-parabolic coupled system with largr initial data[J]. Acta Math. Sci. Set. B Engl Ed, 2009, 29(3): 629-641.
  • 5张映辉,谭忠,孙明保.一个耦合双曲-抛物系统的全局光滑解[J].数学年刊(A辑),2013,34(1):29-46. 被引量:2
  • 6张映辉,谭忠,赖柏顺,孙明保.一个模拟趋化现象的广义双曲-抛物系统的光滑解的全局分析[J].数学年刊(A辑),2012,33(1):27-38. 被引量:2
  • 7L. Corrias, B. Perthama, H. Zaag. A chemotaxis model motivated by angiogenesis[J]. C. R. Aerd. Sei. Paris. Ser. I, 2003(336): 141-146.
  • 8S. Gueron, N. Liron. A model of herd grazing as a traveling wave: chemotaxis and stability[J]. J. Math. Boil, 1989(27): 595-608.
  • 9D. Horstmann, A. Stevens. A constructive approach to travelling waves in chemotaxis[J]. J. Nonlinear Sei, 2004(14): 1-25.
  • 10R. Lui, Z. A. Wang. Ttaveling wave solutions from microscopic to macroscopic chemotaxis models[J]. J. Math. Biol, 2010(61 ): 739-761.

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部