期刊文献+

大坝变形监控模型发展回眸 被引量:46

A Review on Development of Dam Safety Monitoring Models
下载PDF
导出
摘要 随着水工结构的发展和水资源开发利用,大坝安全运行问题日益突出。大坝变形观测资料能综合反映工程安全状态。开展安全监控与预测预报方面的建模理论和方法研究可为馈控结构安全状态以及制定新的设计、施工和运行规范提供科技支撑。据此,回眸了大坝变形监控模型方面的国内外研究进展,总结了常规监控模型和新型监控模型的特点,提出了相应的研究建议。 With the development of the hydraulic structure engineering and the exploitation of water resources,safety operation of the dam has become increasingly important.Since dam deformation observation data can reflect the safety status of engineering comprehensively,researches on modeling theories and methods of safety monitoring and forecasting can provide technology supports for safety state of feedback control structure and the formulation of new design,construction and operation specifications.For this,present research situations and the development of domestic and foreign on dam deformation monitoring model were reviewed and the characteristics of regular and new monitoring model were summarized,then corresponding research proposals were given accordingly.
作者 吴中如 陈波
出处 《现代测绘》 2016年第5期1-3,8,共4页 Modern Surveying and Mapping
基金 国家自然科学基金重点项目(51139001) 国家自然科学基金面上项目(51479054 51279052 51579086 51379068 51579083 51609074) 江苏省基础研究计划(BK20160872) 江苏高校优势学科建设工程资助项目(水利工程)(YS11001) 中央高校基本科研业务费项目(2015B20714 2014B12114) 水利部土石坝破坏机理与防控技术重点实验室基金项目(KY914002)
关键词 大坝变形 监控模型 安全监测 发展回眸 dam deformation monitor model safety monitoring development review
  • 相关文献

参考文献9

  • 1Tonini D. Observed behavior of several leakier arch dams [J]. Journal of the Power Division, 1956, 82 (12): 135-139.
  • 2Purer E. Application of statistical methods in monito- ring dam behavior [J]. Water Power and Dam Con- struction, 1986, 38 (12): 16-19.
  • 3Matteau M, Assam A A, Mesfioui M. Application of multivariate statistical analysis methods to the dam hydrologic impact studies [J]. Journal of Hydrology, 2009, 371(371): 120-128.
  • 4Xu C, Yue D, Deng C. Hybrid GA/SIMPLS as alter- native regression model in dam deformation analysis[J]. Engineering Applications of Artificial In- telligence, 2012, 25(3): 468-475.
  • 5Xi G Y, Yue J P, Zhou B X, et al. Application of an artificial immune algorithm on a statistical model of dam displacement [J]. Computers and Mathematics with Applications, 2011, 62(10): 3980-3986.
  • 6YU Hong1,2,WU ZhongRu1,2,BAO TengFei1,2 & ZHANG Lan1,2 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China,2 National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,Hohai University,Nanjing 210098,China.Multivariate analysis in dam monitoring data with PCA[J].Science China(Technological Sciences),2010,53(4):1088-1097. 被引量:16
  • 7苏怀智,温志萍,吴中如,赖道平.大坝安全性态的非线性组合监控[J].水利学报,2005,36(2):197-202. 被引量:17
  • 8Ravisankar P, Ravi V. Financial distress prediction in banks using group method of data handling neural network, counter propagation neural network and fuzzy ARTMAP [J].Knowledge Based Systems, 2010, 23(8) :823-831.
  • 9Kumar U, Jain V K. Time series models (Grey- Markov, Grey model with rolling mechanism and singular spectrum analysis ) to forecast energy consumption in India [J]. Energy, 2010, 35(4):1709-1716.

二级参考文献18

  • 1ZHANG Chuhan. Numerical modeling of concrete dam-foundation-reservoir system[ M]. Beijing: Tsinghua University Press,2001.
  • 2Humberto, Marengo. Considerations on dam safety and the history of overtopping events[J]. Dam Engineering, 2000, XI(1):29-59.
  • 3Aussen A, Murtagh F. Combining neural network forecast on wavelet-transformed time series[J]. Connection Science, 1997,(9) :113- 121.
  • 4Hsu P H. A Litterman BVAR approach for production forecasting of technology industries[J]. Technological Forecasting and Social Change,2002, (70) :67 - 82.
  • 5Salazar E, Weale M. Monthly data and short-term forecasting: An assessment of monthly data in VAR model [J]. J.Forecast, 1999, (18) :447 - 462.
  • 6Ghatak A. Vector autoregression modeling and forecasting growth of South Korea[J]. J. Appl. Stat., 1998, (25): 579-592.
  • 7ABU-Zahra N H,Lange J H.Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves[J].Advanced Manufacturing Technology, 2002, (20): 248 - 254.
  • 8何薪基,田斌,周建军.最优权组合模型与参数优化在安全监测分析中的应用[J].大坝观测与土工测试,2000,24(5):24-26. 被引量:17
  • 9董景荣.基于小波网络的非线性组合预测方法研究[J].系统工程学报,2000,15(4):383-388. 被引量:19
  • 10吕立华,宋执环,李平.一种小波网络设计新方法[J].信息与控制,2002,31(1):14-18. 被引量:2

共引文献31

同被引文献428

引证文献46

二级引证文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部