期刊文献+

磁共振成像中不相干采样模式对点扩散函数的影响研究

The research of influence between different incoherent sampling patterns and point spread functions in MRI
下载PDF
导出
摘要 压缩感知作为从源头上减少采样数据的新理论,被视为最具前景的快速磁共振成像方法。如何准确评价压缩感知磁共振成像的不相干性是设计磁共振不相干采样轨迹的关键。现有不相干评价指标仍然沿用压缩感知的不相干评价指标,忽略了磁共振设备的物理实际,导致压缩感知在磁共振成像应用中出现理论预期与实际性能差距较大的问题,犹如一道"屏障"横亘在压缩感知与磁共振成像之间,制约了压缩感知的性能。本文通过将传输变换点扩散函数(transform point spread function,TPSF)转换为点扩散函数(point spread function,PSF),从而建立PSF与采样轨迹直接相关的数学表达式,并给出了采样点的位置对PSF形状影响的关系式,最后分别给出了不同采样模式下的PSF仿真实验。实验结果表明,除了PSF的主瓣宽度、旁瓣高度外,旁瓣的分布特征对PSF的影响非常大。 Compressed sensing (CS), which is a new theory that emphasizes reducing sampling data at the source, is regarded as the most promising technique in fast magnetic resonance imaging (MRI). How to evaluate the incoherence of compressed sensing-magnetic resonance imaging (CS-MRI) accurately is a key point to design the incoherent sampling track in MRI. The existing incoherence evaluation indices still follow those used in CS. They ignore the practical influence of the magnetic resonance devices so the practical performance of these incoherence evaluation indices is much different from that in theory when CS is applied to MRI. The problem is like a "barrier" between CS and MRI and restricts the performance in CS-MRI. The paper proposes to convert the transform point spread function (TPSF) to point spread function (PSF). Therefore, the mathematical relationships between the PSFs and sampling trajectory are formulated. Further, the relationships between the positions of sampling points and the shapes of PSFs are also given. At last, simulation experiments are taken to test PSFs in different sampling modes. Simulation results show that except the width of main lobes and the height of side lobe, the distribution characteristics of side lobes have a major effect on the shapes of the PSF.
出处 《磁共振成像》 CAS CSCD 2016年第10期780-785,共6页 Chinese Journal of Magnetic Resonance Imaging
基金 国家自然科学基金项目(编号:61372173)~~
关键词 压缩感知 磁共振成像 不相干采样 Compressed sensing Magnetic resonance imaging Incoherent sampling
  • 相关文献

参考文献25

  • 1Cand6s EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions on, 2006, 52(2): 489-509.
  • 2Donoho DL. Compressed sensing, lnlk)rmation Theory, IEEE Transactions on, 2006, 52(4): 1289-1306.
  • 3Lustig M, Donoho D. Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
  • 4张桂珊,肖刚,戴卓智,沈智威,李胜开,吴仁华.压缩感知技术及其在MRI上的应用[J].磁共振成像,2013,4(4):314-320. 被引量:31
  • 5刘玉,崔皓然,粘永健,邱明国.医学图像无损压缩技术研究进展[J].磁共振成像,2016,7(2):149-155. 被引量:3
  • 6Jaspan ON. Fleysker R, Lipton ML. Compressed sensing MRI: a review of the clinical literature. The British Journal of Radiology, 2015, 88(1056): 20150487.
  • 7Elad M. Sparse and redundant representation modeling-What next'?.Signal Processing Letters, IEEE, 2012, 19(12): 922-928.
  • 8Strohmer T, Measure what should be measured: progress and challenges in compressive sensing. Signal Processing Letters, IEEE, 2012, 19(12): 887-893.
  • 9戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:216
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711

二级参考文献239

  • 1张晓玲,沈兰荪.一种基于自适应预测的医学图像高效无损压缩方法[J].电子学报,2001,29(z1):1914-1916. 被引量:5
  • 2冯晓源,刘含秋.功能磁共振成像在中国的研究现状[J].中国医学计算机成像杂志,2004,10(5):292-298. 被引量:19
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献938

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部