期刊文献+

形状记忆可吸收支架的制备及其在骨组织应用的体外研究 被引量:4

Preparation of shape memory polymers scaffold and in vitro study for bone tissue application
原文传递
导出
摘要 目的研究具有形状记忆功能的支架材料的制备方法,探讨其物理性能及生物相容性,为骨组织工程的应用作奠定基础。方法热压成形术合成孔隙大小及孔隙率适宜的形状记忆聚合物(SMP)支架,应用体式显微镜观察支架材料的形变过程,扫描电镜考察支架材料塑形前后的孔隙变化以及细胞在支架表面附着生长的情况,同时将兔骨髓间充质干细胞(BMSC)接种于支架材料,运用死活细胞染色方法检测该支架材料的生物相容性。数据分析采用方差分析,两两比较采用SNK检验。结果体式显微镜展现了材料自形变后的中间状态恢复到原始状态,形变恢复率约91%,合成的支架材料在人体温度(37℃)下具有形状记忆特性;扫描电镜下可见未形变的支架材料其具有良好的孔隙率(90.6±5.2)%,原始孔隙大小约165μm,压缩状态的孔隙大小约为33μm,同时BMSC与支架材料表面附着良好;死活细胞染色结果显示,BMSC在SMP支架表面培养1、7、14 d的活细胞率分别为(81.5±2.2)%、(86.3±1.9)%、(82.1±1.8)%,空白对照组1、7、14 d活细胞率分别为(82.3±1.7)%、(88.4±1.4)%、(83.7±2.1)%,两组间活细胞率差异无统计学意义(F=0.380,P=0.555)。而SMP支架组1、7、14 d的活细胞密度分别为(91±2.3)、(202±4.8)和(617±5.5)个/mm2,空白对照组1、7、14 d活细胞密度分别为(83±4.5)、(219±5.3)和(599±7.2)个/mm^2,均呈增长模式。结论制备所得支架材料孔隙均一,形变温度为37℃,具有良好形状记忆特性及生物相容性,能响应人体温度恢复到塑型前形状,在微创手术中有巨大的应用潜能。 Objective To fabricate a new smart shape memory polymers(SMP)scaffold and to evaluate its physical and biological properties in bone tissue engineering. Methods The thermo?compression method was used to build the SMP scaffold with proper pore size and porosity. The shape recovery process was detected by stereo?microscope. Electron microscope was used to check its pore size change and the cell attachment on the SMP?scaffold. Live/dead staining was used to test its biocompatibility of the scaffold. Experimental data were analyzed using ANOVA procedure. Differences between groups were compared with SNK?test. Results The pore size of SMP scaffold was 100~300μm and the porosity was(90.6±5.2)%. Under stereo?microscope,the SMP scaffold had an anticipated shape memory recovery in vitro from a small,compact structure to a voluminous structure;the recovery rate was 91%. SEM result demonstrated that the BMSCs attached and spread very well on the wall surface. The live/dead staining indicated that the living cell rates of SMP scaffold group after being incubated for 1,7 and 14 days was (81.5 ± 2.2)%,(86.3 ± 1.9)%,and(82.1 ± 1.8)%,while the control group was(82.3 ± 1.7)%,(88.4 ± 1.4)%,and(83.7±2.1)%,respectively. There was no significant difference(F=0.380,P=0.555)in cell survival between the control and SMP scaffold groups. The results of cell density were(91 ± 2.3),(202 ± 4.8),and(617 ± 5.5)cells/mm2 of SMP scaffold group,(83 ± 4.5),(219 ± 5.3),and(599 ± 7.2)cells/mm2 of the control group in 1,7 and 14 days,respectively,indicated that cell reproduction rate of both groups were on the rise. Conclusion SMP scaffold has excellent shape memory function and biocompatibility, which shows great application potential in the minimally invasive surgery.
出处 《中华口腔医学研究杂志(电子版)》 CAS 2016年第4期244-249,共6页 Chinese Journal of Stomatological Research(Electronic Edition)
基金 国家自然科学基金(青年科学基金项目 31400829) 四川省科技厅科技支撑计划(2015SZ0127)
关键词 形状记忆聚合物材料 组织工程 间质干细胞 骨髓 生物相容性 Shape memory polymers scaffold Tissue engineering Mesenchymal stem cell,Bone marrow Biocompatibility
  • 相关文献

参考文献16

  • 1Hanus J, Z6hora J, Volenec K. Use of thermoelectric properties of materials with shape memory in medicine [J]. Sb Lek, 1998,99 (4) :515-520.
  • 2Gall K, Yakacki CM, Liu Y, et al. Thermomechanics of the shape memory effect in polymers for biomedical applications [J]. J Biomed Mater Res A, 2005,73(3) :339-348.
  • 3Langer R, Tirrell DA, Designing materials for biology and medicine [J ]. Nature, 2004,428 (6982) : 487-492.
  • 4Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573) : 1673-1676.
  • 5Small W, Buckley PR, Wilson TS, et al. Shape memory polymer stent with expandable foam: a new concept for endovascular embolization of fusiform aneurysms [J]. IEEE Trans Biomed Eng, 2007,54(6 Pt 2) : 1157-1160.
  • 6Xue L, Dai S, I,i Z. Biodegradable shape-memory block co- polymers for fast self-expandable stents [J]. Biomaterials, 2010, 31(32) :8132-8140.
  • 7Sokolowski W, Metcalfe A, Hayashi S, et al. Medical applica- tions of shape memory polymers [ J ]. Biomed Mater, 2007,2 ( 1 ) : $23-$27.
  • 8李彦林,杨志明.骨组织工程的支架材料[J].国外医学(生物医学工程分册),2001,24(2):73-77. 被引量:14
  • 9Rezwan K, Chen QZ, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J ]. Biomaterials, 2006,27 ( 18 ) : 3413-3431.
  • 10Kingham E, Oreffo RO. Embryonic and induced pluripotent stem ceils : understanding, creating, and exploiting the nano-niche for regenerative medicine[J]. ACS Nano, 2013,7(3) : 1867-1881.

二级参考文献41

  • 1曹谊林.组织工程学的研究进展[J].中国美容医学,2005,14(2):134-135. 被引量:16
  • 2朱光明,刘忠让.形状记忆聚合物及其在生物医学工程中的应用[J].生物医学工程学杂志,2005,22(5):1082-1084. 被引量:21
  • 3Yang JH, Chun BC, Chung YC, et al. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 2003; 44 (11)∶3251
  • 4Cho JW, Jung YC, Chung YC, et al. Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J Appl Polym Sci, 2004;93 (5)∶2410
  • 5Yasuo S. Shape memory biodegradable and absorbable material.US 6281262. Aug. 28. 2001
  • 6朱光明.一种可完全生物降解的低温形状记忆聚合物的制备方法[P].中国专利 申请号03114594.9..
  • 7Kazimoglu C, Bolukabsi S, Kanatli U, et al. A novel biodegradable PCL film for tendon reconstruction: Achilles tendon defect model in rats. International Journal of Artificial Organs, 2003; 26 (9)∶804
  • 8Hu Y. Shape-memory polymer system developed for medical applications. MRS Bulletin, 2002; 27 (7)∶488
  • 9Zhang XZ, Sun GM, Wu DQ, et al. Synthesis and characterization of partially biodegradable and thermosensitive hydrogel. Journal of Materials Science-Materials in Medicine, 2004;15 (8)∶865
  • 10Maitland DJ, Metzger MF, Schumann D, et al. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers in Surgery and Medicine, 2002; 30∶1

共引文献51

同被引文献41

  • 1曹谊林.组织工程学的研究进展[J].中国美容医学,2005,14(2):134-135. 被引量:16
  • 2朱光明,刘忠让.形状记忆聚合物及其在生物医学工程中的应用[J].生物医学工程学杂志,2005,22(5):1082-1084. 被引量:21
  • 3Hanus J, Z6hora J, Volenec K. Use of thermoelectric properties of materials with shape memory in medicine [J]. Sb Lek, 1998,99 (4) :515-520.
  • 4Gall K, Yakacki CM, Liu Y, et al. Thermomechanics of the shape memory effect in polymers for biomedical applications [J]. J Biomed Mater Res A, 2005,73(3) :339-348.
  • 5Langer R, Tirrell DA, Designing materials for biology and medicine [J ]. Nature, 2004,428 (6982) : 487-492.
  • 6Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573) : 1673-1676.
  • 7Small W, Buckley PR, Wilson TS, et al. Shape memory polymer stent with expandable foam: a new concept for endovascular embolization of fusiform aneurysms [J]. IEEE Trans Biomed Eng, 2007,54(6 Pt 2) : 1157-1160.
  • 8Xue L, Dai S, I,i Z. Biodegradable shape-memory block co- polymers for fast self-expandable stents [J]. Biomaterials, 2010, 31(32) :8132-8140.
  • 9Sokolowski W, Metcalfe A, Hayashi S, et al. Medical applica- tions of shape memory polymers [ J ]. Biomed Mater, 2007,2 ( 1 ) : $23-$27.
  • 10Rezwan K, Chen QZ, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J ]. Biomaterials, 2006,27 ( 18 ) : 3413-3431.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部