期刊文献+

改进线弹性位移不连续模型和结构面弹性模量动力法测试 被引量:2

Improved linear elastic model of discontinuous displacement and dynamic measurement of interface elastic modulus
原文传递
导出
摘要 线弹性位移不连续模型难以准确描述应力波穿过厚度较大的宏观结构面的传播过程,对结构面透射侧的位移分量和应力分量进行多次泰勒展开,建立改进线弹性位移不连续模型,运用原模型和改进模型测试结构面弹性模量,研究阻抗比和结构面厚度对测试误差的影响,研究结果表明:当阻抗比较小时,应选择改进模型,基于反射波的波形差异测试结构面弹性模量;当阻抗比较大时,应选择原模型,基于透射波的波形差异测试结构面弹性模量;数值模拟得到测点振动波形,分析结构面厚度对测试偏差的影响,随结构面厚度增加,基于改进模型反射波波形差异的测试偏差减小,基于原模型透射波波形差异的测试偏差增加,现场试验与数值模拟的结果是一致的。 The propagation process of stress wave across the macro interfaces with larger thickness is difficult to be described using the linear elastic model of discontinuous displacement. The linear elastic model of discontinuous displacement was improved by adopting the multistage Taylor expansion of displacement component and stress component on the side of interface transmission. The elastic modulus of the interface was calculated using the customary and improved models respectively. The effect of impedance ratio and interface thickness on the test error was analyzed. The elastic modulus of the interface should be measured using the customary model based on the waveform difference of transmission wave when the impedance ratio was larger. The effect of interface thickness on the test deviation was analyzed using the vibration waveform of measuring points through numerical calculation. The test deviation,based on the reflection waveform difference adopting the improved model,decreased with the increase of the interface thickness. However,the test deviation based on the transmission waveform difference adopting the customary model increased with the increase of the interface thickness. The results of the field test and the numerical simulation were consistent with each other.
作者 王观石 刘单权 胡世丽 龙平 WANG Guanshi LIU Shanquan HU Shili LONG Ping(Institute of Engineering and Research , Jiangxi University of Science and Technology, Ganzhou , Jiangxi 341000, China School of Architectural and Surveying and Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, diangxi 341000, China)
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2016年第10期2022-2032,共11页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(41462009 51104069) 2014年江西理工大学科研基金项目(NSFJ2014–G06)~~
关键词 岩石力学 线弹性位移不连续模型 结构面 弹性模量测试 测试误差 rock mechanics linear elastic displacement discontinuity model interface elastic modulus measurement test error
  • 相关文献

参考文献18

二级参考文献76

  • 1王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律[J].岩土工程学报,1995,17(2):42-46. 被引量:84
  • 2[1]Achenbatch J D. Wave Propagation in Elastic Solids[M]. Amsterdam,North Holland:A. A.Baalkema,1973
  • 3[2]Hudson J A. Overall properties of a cracked solid[J]. Math. Proc. Camb. Phil. Soc.,1980,88(3):371~384
  • 4[3]Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal of the Royal Astronomical Society,1981,64(1):133~150
  • 5[4]Angle Y C,Achenbach J D. Reflection and transmission of elastic waves by a periodic array of cracks[J]. Journal of Applied Mechanics,1985,52(1):33~46
  • 6[5]Angle Y C,Achenbach J D. Reflection and transmission of elastic waves by a periodic array of cracks:oblique incidence[J]. Wave Motion,1985,9(3):375~388
  • 7[6]Hirose S,Kitahara M. Scattering of elastic waves by a crack with spring-mass contact[J]. International Journal of Numerical Methods in Engineering,1991,31(7):789~801
  • 8[7]Achenbach J D,Norris A N. Loss of specular reflection due to nonlinear crack-face interaction[J]. Journal of Nondestructive Evaluation,1982,3(4):229~239
  • 9[8]Smyshlyaev V P,Willis J R. Linear and nonlinear scattering of elastic waves by microcracks[J]. Journal of Mechanics and Physics of Solids,1994,42(4):585~610
  • 10[9]Capuani D,Willis J R. Wave propagation in elastic media with cracks Part I:transient nonlinear response of a single crack[J]. European Journal of Mechanics A/Solids,1997,16(3):377~408

共引文献248

同被引文献28

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部