期刊文献+

基于核密度多伯努利视频多目标跟踪算法 被引量:2

Multi-target visual tracking algorithm based on kernel-density and multi-Bernoulli filter
原文传递
导出
摘要 针对复杂环境下数目变化、目标紧邻及尺寸变化的视频多目标跟踪问题,在多伯努利滤波框架下,提出一种自适应的变数目视频多目标跟踪算法。算法通过引入核密度背景减除技术,可以有效抑制背景干扰;然后融入连续自适应均值漂移(CAMShift)技术,并提出目标紧邻和尺寸变化处理机制,可以有效提高算法的自适应性;最后引入粒子标记技术,可以有效实现对视频多目标的轨迹跟踪。对彩色视频和红外视频序列图像的测试结果表明,本文提出算法可以有效实现对复杂环境下数目变化的视频多目标自适应跟踪,且具有较好的鲁棒性。 To solve the problem that it is difficult to obtain the accurate estimations of the multiple targets in video with complex environment,we propose an adaptive multi-target tracking algorithm under the framework of multi-Bernoulli filter.First,the kernel density background subtraction technique is introduced in this paper,which can effectively restrain the background interference.Then,continuously adaptive mean shift(CAMShift)method is integrated into the framework of multi-Bernoulli filter,and adaptive mechanisms are proposed to handle problems of closely spaced target tracking and the variation of target size.In addition,particle labeling technique is introduced to identify the path of each target in the video.Experimental results show that the proposed algorithm with strong robustness can effectively achieve the visual multi-target tracking in complex circumstances.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第10期1066-1076,共11页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61305017) 江苏省自然科学基金(BK20130154)资助项目
关键词 背景密度图 多伯努利滤波 连续自适应均值漂移(CAMshift) 航迹跟踪 background density image multi-Bernoulli filter continuously adaptive mean shift(CAM-Shift) trajectory tracking
  • 相关文献

参考文献3

二级参考文献39

  • 1闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 2Arulampalam M, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking [J]. IEEE Transactions on Singal Processing, 2002, 50(2) : 174- 188.
  • 3Nummiaro K, Koller-Meier E, Gool L V. An adaptive colorbased particle filter [J]. Image and Vision Computing, 2003, 21(1): 99-110.
  • 4Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) : 603-619.
  • 5Gomanieiu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5) : 564-577.
  • 6Li Z, Tang Q L, Sang N. Improved mean shift algorithm for occlusion pedestrian tracking [J]. Electronics Letters, 2008, 44 (10) :622-623.
  • 7Maggio E, Cavallaro A. Hybrid particle filter and mean shift tracker with adaptive transition model[ C ]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington DC, USA: IEEE Computer Society Press, 2005:221-224.
  • 8Bradski G R. Real time face and object tracking as a component of a perceptual user interface [ C ]//Proceedings of the 4th Workshop on Applications of Computer Vision. Washington DC, USA : IEEE Computer Society Press, 1998 : 214-219.
  • 9Bradski G R. Computer vision face tracking for use in a perceptual user interface [ J ]. Intel Technology Journal, 1998, 2(2): 1-15.
  • 10Bai K J, Liu W M. Improved object tracking with particle filter and mean shift [C]//Proceedings of IEEE International Conference on Automation and Logistics. Washington DC, USA: IEEE Computer Society Press, 2007:431-435.

共引文献42

同被引文献13

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部