期刊文献+

基于亮度统计的无参考图像质量评价 被引量:2

No-reference image quality assessment based on luminance statistics
原文传递
导出
摘要 基于亮度均值减损对比归一化(MSCN)系数统计特性及其8方向邻域系数间的相关性,提出了一种通用无参考图像质量评价方法.首先,分别利用非对称广义高斯分布(AGGD)模型拟合MSCN系数及其8方向邻域系数,并估计相应AGGD模型参数作为亮度统计特征;其次,计算8方向邻域MSCN系数间的互信息(MI),作为描述方向相关性的统计特征;进而,分别利用支持向量回归机(SVR)和支持向量分类机(SVC)构建无参考图像质量评价模型和图像失真类型识别模型;最后,在LIVE等图像质量评价数据库上进行了算法与DMOS的相关性、失真类型识别、模型鲁棒性及计算复杂性等方面的实验。实验结果表明,本文方法的评价结果与人类主观评价具有高度的一致性,在LIVE图像质量评价数据库上的斯皮尔曼等级相关系数(SROCC)和皮尔逊线性相关系数(PLCC)均在0.945以上;而且,图像失真类型识别模型的识别准确率也高达到92.95%,明显高于当今主流无参考图像质量评价方法。 Based on the statistical properties of mean subtracted contrast normalized(MSCN)coefficient and the correlation between MSCN neighborhood coefficients along 8directions,ageneral-purpose noreference image quality assessment(NR-IQA)method is proposed.Firstly,asymmetric generalized gaussian distribution(AGGD)models are used to fit MSCN coefficient and its neighborhood coefficients along 8directions respectively,and the parameters of those AGGD models are estimated as the statistical characteristics of luminance.Secondly,the mutual information(MI)between neighborhood MSCN coefficients along 8directions are calculated as the statistical characteristics of directional correlation.Moreover,support vector regression(SVR)and support vector classifier(SVC)are used to construct the NRIQA model and the image distortion type recognition model,respectively.At last,in order to analyze the correlation with differential mean opinion score(DMOS),the classification accuracy and the computational complexity,a large number of simulation experiments are carried out in the LIVE image quality evaluation database.The simulation results show that this method is suitable for many common distortions and consistent with subjective assessment,and the Spearman′s rank ordered correlation coefficient(SROCC)and the Pearson′s linear correlation coefficient(PLCC)in LIVE image quality evaluation database are more than 0.945.In addition,the recognition accuracy of the recognition model is up to 92.95%and significantly superior to all present NR-IQA methods.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第10期1101-1110,共10页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61374022) 浙江省公益性技术应用研究计划项目(2014C33109) 浙江省新型网络标准及其应用技术重点实验室开放课题(2013E10012) 浙江理工大学研究生创新研究(YCX15025)资助项目
关键词 图像质量评价 亮度统计 自然场景统计 互信息(MI) image quality assessment luminance statistics natural scene statistics mutual information(MI)
  • 相关文献

参考文献7

二级参考文献137

  • 1Wang Z, Bovik A C, Evans B L, Blind measurement of blocking artifacts in images [ C ]//Proceedings of IEEE International Con- ference on Image Processing. Vancouver, BC: IEEE, 2000, 3: 981-984.
  • 2Liu H, Klomp N, Heynderickx I. A no-reference metric for per- ceived ringing artifacts in images [ J 1. IEEE Transactions on Cir- cuits and Systems for Video Techndogy, 2010, 20(4) : 529-539.
  • 3Narvekar N D, Karam L J. A no-reference image blur metric based on the cumulative probability of blur detection [ J ]. IEEE Transactions on Image Processing, 2011, 20(9) : 2678-2683.
  • 4Brandao T, Queluz M P. No-reference image quality assessment based on DCT-domain statistics [ J ]. IEEE Signal Processing, 2008, 88(4) : 822-833.
  • 5Sheikh H R, Bovik A C, Cormack L. No-reference quality as- sessment using natural scene statistics : JPEG2000 [ J ] . IEEE Transactions on Image Processing, 2005, 14( 11 ) : 1918-1927.
  • 6Chen M J, Bovik A C. No-reference image blur assessment using multiscale gradient [ J ]. EURASIP Journal on Image and Video Processing, 2011, 3 : ( 1-11 ).
  • 7Shen J, Li Q, Erlebacher G. Hybrid no-reference natural image quality assessment of noisy, blurry, JPEG2000, and JPEG ima- ges [ J 1. IEEE Transactions on Image Processing, 2021,20 (9) : 2089 -2098.
  • 8Saad M A, Bovik A C, Charrier C. A DCT statistics-based blind image quality index [ Jl. IEEE Signal Processing Letters, 2010, 17(6) : 583-586.
  • 9Saad M A, Bovik A C, Charrier C. Blind image quality assess- ment: a natural scene statistics approach in the DCT domain [J]. IEEE Transactions on Image Processing, 2012, 21 (8) : 3339-3352.
  • 10Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices [ J]. IEEE Signal Processing Letters, 2010, 17(5) : 513-516.

共引文献81

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部