期刊文献+

基于协同热扩散模型的协同图像分割算法 被引量:1

Heat co-diffusion based image co-segmentation algorithm
原文传递
导出
摘要 针对传统的图像分割算法由于缺乏先验知识得不到理想的分割结果,或需要大量的人工交互问题,本文提出了一种基于协同热扩散模型的协同图像分割算法。算法通过建立图像集合中的扩散模型,利用传导边将图像连接成一个统一的扩散网络,从而将图像集合的协同分割问题转化为3D扩散模型最大增益的求解问题,最终根据子模优化理论对其进行求解。在协同分割数据集上的大量对比实验,验证了本文协同分割算法的优异性能。 The traditional image segmentation algorithms can be roughly divided into two types,i.e.,unsupervised bottom-up segmentation algorithms and supervised segmentation algorithms with interactions.For complex scenes or complicated targets,the former usually fails to work well due to the lack of prior knowledge.And the latter can achieve satisfactory segmentations with users' interactions,but it greatly increases the burden of the users.Recently,co-segmentation as a weak-supervised algorithm has got more and more attention.In this paper,we propose a heat co-diffusion based image co-segmentation algorithm.We first establish a 3Dco-diffusion network between images by connecting conduction edge with similar objects.Then,the image co-segmentation is converted into how to get the maximal marginal gain in the conducting network.It is proved that the problem could be solved by sub-modular theory.Compared with several state of the art co-segmentation methods,the experimental results of the proposed method show good performance on benchmark datasets.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第10期1111-1119,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61305044) 高校博士点基金(20130144120004)资助项目
关键词 图像分割 协同图像分割 热源扩散 协同扩散 image segmentation image co-segmentation heat diffusion co-diffusion
  • 相关文献

参考文献2

二级参考文献21

  • 1Huang D, Shan C,Ardabilian M, et al Local binary pat- terns and its application to facial image analysis..a survey [J].IEEE Transactions on Systems, Man, And Cybernet- ics-Part C .. Applications And Reviews, 2011,41 ( 6 ) : 765- 781.
  • 2Tan K S,Isa N A M Color image segmentation using his- togram thresholding fuzzy c-means hybrid approach[J].Pattern Recognition,2011,44(1) .. 1-15.
  • 3Yuksel M E,Borlu M Accurate segmentation of dermosc- opic images by image thresholding based on type-2 fuzzy Iogic[J].IEEE Transactions On Fuzzy Systems, 2009,17 (4) :976-982.
  • 4Zeng X Y,Che Y W N,Nakao Z,et al. Texture represen- tation based on pattern map[J]. Signal Process, 2004,84 (3) :589-599.
  • 5HUANG Rui, SANG Nong, LUO Da-peng,et al. Image seg- mentation via coherent clustering in Lab color space[J]. Pattern Recognition Letters,2011,32(7) : 891-902.
  • 6Krinidis S,Chatzis V. A robust fuzzy local informatio'n cmeans clustering algorithm[J]. IEEE Transactions On Image Process,2010,19(5) :1328-1337.
  • 7Zhang K,Zhang L,Song H,et al. Active contours with selective local or global segmentation: a new formulation and level set method[J].Image and Vision Computing, 2010,28(4) : 668-676.
  • 8Mirandaa P A V,Facaoa A X,Udupa J K. Synergistic arc- weight estimation for interactive image segmentation using graphs[J]. Computer Vision and Image Understand- ing,2010,114(1) :85-99.
  • 9Ugarriza G, Saber L, Vantaram E, et al. Automatic image segmentation by dynamic region growth and multiresolu- tion merging[JJ. IEEE Transactions on Image Processing, 2009,18(10) .. 2275-2288.
  • 10NING Ji-feng, ZHANG Lei, ZHANG David, et al. Interactive image segmentation by maximal similarity based region merging[J]. Pattern Recognition,20]0,43(2) :445-456.

共引文献25

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部