摘要
针对安时积分(AH)法的累积误差问题和卡尔曼滤波算法对系统噪声的限制,提出了粒子滤波(PF)修正安时积分误差的方案,并基于钴酸锂电池测试数据和电池等效电路模型,对算法进行仿真验证。通过与传统的AH和卡尔曼滤波法对比得出:基于AH和PF修正的方法荷电状态(SOC)估计效果较好,平均误差与标准误差均控制在2%以内。
Aiming at problems of accumulate-errors of Ampere-hour integral( AH) method and limitation of Kalman filtering algorithm on noise,a scheme of correction accumulate-errors of AH with particle filtering( PF) is given. Based on LCO battery testing data and model for battery equivalent circuit,the algorithm is verified by using simulation. Compared with AH method and Kalman filtering algorithm,the algorithm of AH with PF correction is better on estimation of state of charge( SOC),average error and standard error are both less than 2 %.
出处
《传感器与微系统》
CSCD
2016年第10期4-7,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61303265)
关键词
锂离子电池
等效电路模型
荷电状态
粒子滤波
安时积分
lithium-ion battery
equivalent circuit model
state of charge(SOC)
particle filtering(PF)
Ampere-hour integral(AH)