摘要
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x)) + ∈2(fn2(x)y(2p+1) + gm2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials hl1 and hl2 have degree l;fn1and fn2 have degree n;and gm1,gm2 have degree m.p ∈ N and[·]denotes the integer part function.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x)) + ∈2(fn2(x)y(2p+1) + gm2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials hl1 and hl2 have degree l;fn1and fn2 have degree n;and gm1,gm2 have degree m.p ∈ N and[·]denotes the integer part function.