期刊文献+

LIMIT CYCLES OF THE GENERALIZED POLYNOMIAL LINARD DIFFERENTIAL SYSTEMS

LIMIT CYCLES OF THE GENERALIZED POLYNOMIAL LINARD DIFFERENTIAL SYSTEMS
原文传递
导出
摘要 Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x)) + ∈2(fn2(x)y(2p+1) + gm2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials hl1 and hl2 have degree l;fn1and fn2 have degree n;and gm1,gm2 have degree m.p ∈ N and[·]denotes the integer part function. Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x)) + ∈2(fn2(x)y(2p+1) + gm2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials hl1 and hl2 have degree l;fn1and fn2 have degree n;and gm1,gm2 have degree m.p ∈ N and[·]denotes the integer part function.
出处 《Annals of Applied Mathematics》 2016年第3期221-233,共13页 应用数学年刊(英文版)
关键词 limit cycle periodic orbit Li′enard differential system averaging theory limit cycle periodic orbit Li′enard differential system averaging theory
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部