期刊文献+

纳米银/聚多巴胺/纤维素纤维抗菌纸的两锅法原位制备的两锅法原位制备、表征及性能 被引量:6

Two-pot in situ preparation,characterization and performance of nano silver/polydopamine/cellulose fiber antibacterial paper
原文传递
导出
摘要 通过两锅法成功制得纳米银/聚多巴胺/纤维素纤维(nano Ag/PDA/CF)抗菌纸,此过程无需外加还原剂。扫描电镜(SEM)观察及能谱(EDX)分析表明,抗菌纸表面载有尺寸为70~150 nm球形或立方形纳米银粒子。X射线衍射(XRD)和热重(TGA)分析证明,纳米银粒子原位生成并沉积在聚多巴胺功能化的纤维素纤维表面。所制得的nanoAg/PDA/CF新型抗菌纸对金黄色葡萄球菌(Staphylococcus aureus)和大肠杆菌(Escherichia coli)均表现出显著的抗菌活性。nanoAg/PDA/CF复合纤维的最佳制备条件为:pH值8.5,多巴胺质量浓度125 mg/L,硝酸银质量浓度375 mg/L,多巴胺自聚合时间2 h,室温。 The nano silver/polydopamine/cellulose fiber(nanoAg/PDA/CF) antibacterial paper is successfully in situ prepared by the twopot method without using any additional reducing agent. The scanning electron microscopy(SEM) and the energy dispersive X- ray spectroscopy(EDX) analyses reveal that the spherical or cuboidal silver nanopartiles with the size of 70~150 nm are loaded on the surface of the nanoAg/PDA/CF antibacterial paper. The X-ray diffraction(XRD) and the thermogravimetric(TG) analyses confirm that the silver nanopartiles are in situ generated and deposited on the polydopamine functionalized cellulose fiber surface. The novel nanoAg/PDA/CF antibacterial paper shows a remarkable antibacterial feature against both S. aureus and E.coli. The optimum preparative conditions of the nanoAg/PDA/CF composite are: the pH value of 8.5, the dopamine concentration of 125 mg/L, the silver nitrate concentration of 375 mg/L,the dopamine self-polymerization time of 2 h, and the room temperature.
出处 《科技导报》 CAS CSCD 北大核心 2016年第19期81-86,共6页 Science & Technology Review
关键词 纤维素纤维 聚多巴胺 纳米银 抗菌纸 两锅法 cellulose fibers polydopamine nano silver antibacterial paper two-pot method
  • 相关文献

参考文献1

二级参考文献16

  • 1朱育平,陈晓.分峰计算结晶度的问题探讨[J].实验室研究与探索,2010,29(3):41-43. 被引量:22
  • 2Oudiani Y,Chaabouni S,Msahli F,et al.Crystal transition from cellulose I to cellulose II in Na OH treated Agave americana L.Fibre[J].Carbohydrate Polymers,2011(86):1221-1229.
  • 3Gupta P K,Vanshi U,Naithani.Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive[J].Carbohydrate Polymers,2013(94):843-849.
  • 4Masahisa W,Takeshi O.Synchrotron-radiated X-ray and neutron diffraction study of native cellulose[J].Cellulose,1997(4):221-232.
  • 5Matheus P,Ademir J,Zattera M M,et al.Thermal decomposition of wood:Influence of wood components and cellulose crystallite size[J].Bioresource Technology,2012(109):148-153.
  • 6Ung J K,Seok H E,Masahisa W.Thermal decomposition of native cellulose:Influence on crystallite size[J].Polymer Degradation and Stability,2010(95):778-781.
  • 7Zhao J Q,Zhang W,Zhang X D,et al.Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization[J].Carbohydrate Polymers,2013(97):695-702.
  • 8Rojith G,Bright S I.Cellulose crystallinity change assessment of biochar produced by pyrolysis of coir pith[J].Research Journal of Recent Sciences,2012(2):1-6.
  • 9Alenka K,Thomas A S,Benians F G,et al.Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR,X-ray diffraction,and carbohydrate-binding module probes[J].Biomacromole Cules,2011(12):4121-4126.
  • 10Agarwal U P,Reiner R S,Ralph S A.Cellulose I crystallinity determination using FT-Raman spectroscopy:univariate and multivariate methods[J].Cellulose,2010(17):721-733.

共引文献45

同被引文献46

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部