期刊文献+

基于自回归模型功率谱估计预测放射治疗中靶区的呼吸运动 被引量:1

Prediction of respiratory motion based on power spectrum estimation of autoregressive model during radiotherapy
下载PDF
导出
摘要 目的:基于自回归模型功率谱估计提出一种预测放射治疗中靶区呼吸运动的方法,为解决实时跟踪放疗中系统延迟问题提供参考。方法:通过X射线连续透视影像获取肺癌患者靶区呼吸运动信号,利用自回归模型功率谱估计的Burg方法预测靶区呼吸运动,比较预测误差E_(predicted)和系统延迟误差E_(shifted),分析预测算法的有效性。结果:用Burg方法预测10例肿瘤患者呼吸运动信号,E_(predicted)=(0.6±0.3)mm,E_(shifted)=(2.5±1.3)mm,E_(predicted)<E_(shifted)(P<0.01)。结论:用Burg方法预测靶区呼吸运动是有效的,可以作为临床运用的一种选择。 Objective To compensate the time lag in real-time tracking radiotherapy by proposing a method for predicting the respiratory motion of target volume during the radiotherapy based on the power spectrum estimation of autoregressive (AR) model. Methods Tumor respiratory motion signals of patients with lung cancer were obtained through consecutive X-ray fluoroscopy images. The respiratory motion of target volume was predicted by Burg method of AR model. The validity of Burg method was evaluated by comparing predicted error (Epredicted) and the error of time lag (Eshitied). Results Ten tumor respiratory motion signals were predicted by Burg method. According to the results, Epredicted = (0.6±0.3) mm, Esbifted = (2.5±1.3) ram, Eptedictedd 〈 Eshifted (P〈0.01). Conclusion Burg method which can be an option for clinical application is effective in tumor respiratory motion prediction.
出处 《中国医学物理学杂志》 CSCD 2016年第10期992-996,共5页 Chinese Journal of Medical Physics
基金 湖北省自然科学基金(2014CFB366)
关键词 放射治疗 实时跟踪 呼吸运动 自回归模型 预测 radiotherapy real-time tracking respiratory motion autoregressive model prediction
  • 相关文献

参考文献1

二级参考文献14

  • 1Seppenwoolde Y,Shirato H,Kitamura K,et al.Precise and real-time measurement of 3-D tumor motion in lung due to breathing and heartbeat,measured during radiotherapy[J].International Journal of Radiation Oncology Biology Physics,2002,53(4):822-834.
  • 2Clifford M A,Banovac F,Levy E,et al.Assessment of hepatic motion secondary to respiration for computer assisted interventions[J].Computer Aided Surgery,2002,7(5):291-299.
  • 3Hanley J,Debois M M,Mah D,et al.Deep inspiration breath-hold technique for lung tumors:The potential value of target immobilization and reduced lung density in dose escalation[J].International Journal of Radiation Oncology Biology Physics,1999,45(3):603-611.
  • 4Rosenzweig K E,Hanley J,Mah D,et al.The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer[J].International Journal of Radiation Oncology Biology Physics,2000,48(1):81-87.
  • 5Wagman R,Yorke E,Ford E,et al.Respiratory gating for liver tumors:Use in dose escalation[J].International Journal of Radiation Oncology Biology Physics,2003,55(3):659-668.
  • 6Tchoupo G N.Predictive Feedback Control of the Treatment Couch for Tumor Motion Compensation during Radiotherapy[D].Richmond,VA,USA:Virginia Commonwealth University,2008.
  • 7Kalet A,Sandison G,Wu H,et al.A state-based probabilistic model for tumor respiratory motion prediction[J].Phys Med Biol,2010,55(24):7615-7631.
  • 8Jin J,Ren L,Liu Q,et al.Combining scatter reduction and correction to improve image quality in cone-beam computed tomography(CBCT)[J].Medical Physics,2010,37(11):5634-5644.
  • 9Murphy M J,Dieterich S.Comparative performance of linear and nonlinear neural networks to predict irregular breathing[J].Phys Med Biol,2006,51(22):5903-5914.
  • 10Wu H,Sharp G C,Salzberg B,et al.A finite state model for respiratory motion analysis in image guided radiation therapy[J].Phys Med Biol,2004,49(23):5357-5372.

共引文献1

同被引文献27

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部