期刊文献+

基于用户生成标签的多视角特征学习方法

Multi-View Feature Learning Based on User Contributed Tag
下载PDF
导出
摘要 提出了一种基于用户生成标签的多视角特征学习方法。采用词袋模型分别得到媒体的内容特征表示和标签特征表示;通过媒体词汇和文本词汇的相关性建模,学习文本特征空间和内容特征空间的映射模型。在此基础上,给出了优化前后的特征表示具备近似等距映射保持的理论依据。该方法相对数据集规模具备线性时间复杂度,适用于大规模数据集,具备多视角特征融合能力。基准数据集上测试表明,优化后的特征表示较特征拼接和相关成分分析等方法鉴别力更强。 A multi-view feature learning method based on user contributed tag was proposed. Bag-of-words representation for content feature and textual feature was learned. A multi-view feature learning framework was proposed to explicitly model the relevance between multimedia object and tags by learning a linear mapping from textual representation to visual representation. The learned feature encoded the information conveyed by original feature, and inner products of leaned features were preserved with a high probability with visual features and textual features. The complexity of the method is linear with respect to the size of dataset. Furthermore, the method can be extended to deal with more than two views. The performance of the proposed method indicts it's superiority over other representative method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第10期2362-2368,共7页 Journal of System Simulation
基金 国家自然科学基金(61502094 61402099) 黑龙江省自然科学基金(F2016002 F2015020) 黑龙江省教育科学规划重点课题(GJB1215019)
关键词 多视角特征 多视角学习 用户生成标签 特征学习 multi-view feature multi-view learning user contributed tag feature learning
  • 相关文献

参考文献35

  • 1Guyon I, Elisseeff A. An introduction to variable and feature selection [J]. The Journal of Machine Learning Research (S 1532-4435), 2003, 3 (9): 1157-1182.
  • 2Lanckriet G R C~ Cristianini N, Bartlett P, et al. Learning the kernel matrix with semidefinite programming [J]. The Journal of Machine Learning Research (S1532-4435), 2002, 5(1): 323-330.
  • 3Vedaldi A, Gulshan V, Varma M, et al. Multiple kernels for object detection [C]// Computer Vision, 2009 IEEE 12th International Conference on. USA: IEEE, 2009: 606-613.
  • 4Wang S, Jiang S, Huang Q, et al. S3MKL: scalable semi-supervised multiple kernel learning for image data mining [C]// Proceedings of the international conference on Multimedia. USA: ACM, 2010: 163-172.
  • 5Xu Z, King I, Lyu M R T, et al. Discriminative semi-supervised feature selection via manifold regularization [J]. Neural Networks, IEEE Transactions on (S1045-9227), 2010, 21(7): 1033-1047.
  • 6Xing E P, Karp R M. CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts [J]. Bioinformatics (S1367-4803), 2001, 17(S1): 306-315.
  • 7Cai D, Zhang C, He X. Unsupervised feature selection for multi-cluster data [C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining. USA: ACM, 2010: 333-342.
  • 8Zhang S T, Huang J Z, Huang Y C, et al. Automatic image annotation using group sparsity [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, N J, USA: IEEE Computer Society, 2010:3312-3319.
  • 9Wu F, Han Y H, Tian Q, et al. Multi-label Boosting for image annotation by structural grouping sparsity [C]// Proceedings of the ACM Multimedia International Conference. New York, USA: ACM, 2010: 15-24.
  • 10Yang Y, Yang Y, Huang Z, et al. Tag localization with spatial correlations and joint group sparsity [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, N J, USA: IEEE Computer Society, 2011: 881-888.

二级参考文献2

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部