期刊文献+

一种普适的基于多尺度滤波和统计学混合模型的血管分割方法 被引量:3

A Universal Vessel Segmentation Method Based on Multi-Scale Filtering and Statistical Mixture Model
下载PDF
导出
摘要 血管的精确提取和定位,是实现心脑血管介入手术的关键。多尺度滤波算法可以增强血管目标,同时抑制背景噪声,但并没有把血管从图像背景中区分出来。基于统计学的分割算法,通过对直方图进行拟合实现血管的分类,但需要调整混合模型去拟合特定的图像直方图。为了克服上述问题,提出一种具有固定模型的普适的血管分割方法。首先,利用多尺度滤波算法进行图像预处理。其次,针对滤波增强后数据的直方图曲线,用由3个概率分布函数(1个高斯和2个指数)组成的混合模型进行拟合。期望最大化算法用于混合模型参数的估计。最后,通过最大后验概率分类算法将血管分离出来。为了验证上述方法的有效性,分别在仿真(phantom)数据、磁共振血管造影(MAR)数据和计算机断层血管造影(CTA)数据上进行实验测试。结果表明,所提出的方法在多套仿真数据上的分割误差低于0.3%,同时对于不同模态的血管图像具有很好的分割效果及较强的鲁棒性。 Accurate extraction and localization of blood vessels are the keys to the intervention operation of cardiac and cerebral vessels. Multi-scale filtering strengthens the vessels while weaken the background voxels,but the vessels are still not marked out. Statistical based segmentation method classifies the vessels through model fitting for the histogram curve,but it needs to adjust its model to fit a certain image histogram. To overcome these problems,a universal vessel segmentation method with a fixed model has been proposed in this paper. Firstly,the original image was preprocessed with multi-scale vessel enhancement algorithm. Secondly,a mixture model formed by three probabilistic distributions( one normal distribution and two exponentials) was built to fit the enhanced data. Expectation maximization algorithm has been used for parameters estimation.Finally,the vessels were segmented by maximum a posteriori classification. To test the effectiveness of the proposed method,experiments have been done on a series of phantoms,magnetic resonance angiography( MRA) data and computed tomography angiography( CTA) data. As a result,the segmentation errors of the phantoms are less than 0. 3%. Meanwhile,the proposed method performed well on multi-modality images with strong robustness.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2016年第5期519-525,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金国家高技术研究发展计划(863计划)(2015AA043203) 广东省创新研究团队项目(2011S013)
关键词 血管分割 多尺度滤波 混合模型 多模态图像 vessel segmentation multi-scale filtering mixture model multi-modality images
  • 相关文献

参考文献11

  • 1金可,刘苏.血管影像分割技术综述[J].中国制造业信息化(学术版),2012,41(6):61-64. 被引量:2
  • 2Mesejo P, Valsecchi A, Marrakchi-Kacem L, et al. Biomedical image segmentation using geometric deformable models and metaheuristics[ J ]. Computerized Medical Imaging & Graphics the Official Journal of the Computerized Medical Imaging Society, 2015, 43:167-178.
  • 3Ye DH, Kwon DJ, Yun ID, et al. Fast multiscale vessel enhancement filtering [ J ]. Proeessings of the SPIE, Medical Imaging, 2008, 6914 : 691423 - 691428.
  • 4Gao Xin, Uchiyama Y, Zhou Xiangrong, et al. A fast and fully automatic method for cerebrovascular segmentation on time-of- flight (TOF) MRA image[J]. Digit Imaging, 2011, 24 (4):609 -625.
  • 5曹容菲,张美霞,王醒策,武仲科,周明全,田沄,刘新宇.基于高斯-马尔科夫随机场模型的脑血管分割算法研究[J].电子与信息学报,2014,36(9):2053-2060. 被引量:7
  • 6王醒策,文蕾,武仲科,周明全,田沄,刘新宇.面向时飞磁共振血管造影术的脑血管统计分割混合模型[J].光学精密工程,2014,22(2):497-507. 被引量:2
  • 7Wilson DL, Noble JA. An adaptive segmentation algorithm for tlme-of/light MRA data[J]. IEEE Trans Med Imaging, 1999, 18 (10) : 938 -945.
  • 8Hassouna MS, Farag AA, Hushek S, et al. Cerebrovascular segmentation from TOF using stochastic models[ J ]. Med Image Anal, 2006, 10:2-18.
  • 9Zhou Shoujun, Chen Wufan, Jia Fueang, et al. Segmentation of brain magnetic resonance angiography images based on map-turf with multi-pattern neighborhood system and approximation of regularization coefficient[ J]. Medical Image Analysis, 2013, 17 (8) : 1220 -1235.
  • 10Frangi AF, Niessen WJ, Vincken KL, et al. Muhiscale vessel enhancement filtering [ C ]//Proceedings of the International Conference on Medical Image Computing Computer Assisted Intervention. Lect: Notes Comp Sci, 1998, 1496: 130- 137.

二级参考文献56

  • 1姚畅,陈后金.一种新的视网膜血管网络自动分割方法[J].光电子.激光,2009,20(2):274-278. 被引量:17
  • 2潘立丰,王利生.一种视网膜血管自适应提取方法[J].中国图象图形学报,2006,11(3):310-316. 被引量:8
  • 3Tolias Y, Panas S A. Fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering [ J ]. IEEE Transmitting on Medical lrnage, 1998,17(3) :263 - 273.
  • 4Zana F, Klein JC. Segmentation of Vessel - Like pattern using mathematical morphology and curvature evaluation [ J ]. IEEE Trans. Image Processing,2001,10(7) : 1 010 - 1 019.
  • 5Stansfield S A. ANGY: a rule - based expert system for automat- ic segmentation of coronary vessels from digital subtracted an- giograms[J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence,1986(2):188 199.
  • 6Aylward S, Weeks S, Bullitt E. Registration and analysis of vas- cular imagesEJ ]. Internal Journal of Computer Vision Speeialis-sue,2003,55(2/3):123 - 138.
  • 7Schrnitt H,Grass M,Rasche V, et al. An x - ray based method for the deterrninationof the contrast agent propagation in 3 - d vessel structures [ J ]. IEEE Transmitting on Medical Image, 2002,21(3) :251 - 262.
  • 8Hoover A, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched fil- ter response[J ]. IEEE Transmitting on Medical Image, 2000,19 (3) :203 - 210.
  • 9Rueckert D,Burger P, Forbat SM, et al. Automatic tracking of the aorta in cardiovascular mr images using deformable models EJ ]. IEEE Transmitting on Medical Image, 1997, 16 ( 10 ) : 581 - 590.
  • 10百度百科.心脑血管疾病[OL].[2011-08-10].http://baike.baidu.com/view/783095.htm.

共引文献8

同被引文献12

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部