期刊文献+

一种基于单形体正化的高光谱数据全约束线性解混方法 被引量:1

A fully constrained linear unmixing method:Simplex regularization for hyperspectral imagery
下载PDF
导出
摘要 在端元已知情况下,线性混合模型的非负约束最小二乘无闭式解,需要多次迭代得收敛最优解,时间复杂度高.通过高光谱数据凸面几何特性分析,指出当数据为正单形体时,可经有限步骤快速得线性混合模型最优解.据此提出一种单形体正化的高光谱数据全约束线性解混方法,据已知端元进行单形体正化,采用和为一约束求解丰度系数,最后迭代剔除丰度负值端元得全约束解.实验结果表明该方法可获得传统全约束解一致的丰度估计,且效率大大提升. With a priori information of the known endmembers in hyperspectral image,there is no closed-form solution of Least Square( LS) method for linear mixing model under the Abundance Nonnegativity Constraint( ANC). So many iterations which may result in big computational complexity are needed in the traditional Fully Constrained LS( FCLS) methods to obtain the optimal solution. In this paper,an analysis of impacts on abundance estimation of hyperspectal image in different simplex shapes was implemented and a fully constrained linear unmixing method based on simplex regularization was proposed which could get optimal solution under limited iteration when the hyperspectral image was spanned into a regular simplex. The proposed method was carried out by three steps. Firstly,the simplex of hyperspectral image was regularized by the known endmembers' whitening matrix. Secondly,the analytical solution of abundance coefficients was obtained under Abundance Sum-to-one Constraint( ASC). Then for every pixel,the FCLS solution was achieved by eliminating the endmembers with negative abundance coefficients and solving the ASC equation iteratively. Experiments on simulated and real hyperspectral images indicate that the proposed method can obtain consistent results withtraditional FCLS method and decrease the computational burden efficiently.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2016年第5期592-599,共8页 Journal of Infrared and Millimeter Waves
基金 中国地质调查局地质调查项目(1212011120226) 国家863计划课题(2012AA12A308) 中国科学院科技服务网络计划项目(KFJEW-STS-046)~~
关键词 高光谱数据 光谱解混 端元白化 单形体正化 全约束最小二乘 Hyperspectral Imagery spectral unmixing endmember whitening simplex regularization FCLS
  • 相关文献

参考文献18

  • 1童庆禧,张兵,郑兰芬.高光谱遥感一原理、技术与应用.北京:高等教育出版社,2006.
  • 2BIOUCAS-DIAS J. M. , PLAZA A. , DOBIGEON N.. Hy- perspectral unmixing overview : Geometrical, statistical, and sparse regression-based approaches [ J ]. IEEE Journal of selected topics in applied earth observations and remote sensing, 2012,5(2) :354-379.
  • 3KESHAVA N, MUSTARD J F. Spectral unmixing [ J]. IEEE Signal Process. Mag. , 2002, 19( 1 ) :44-57.
  • 4HEINZ D C, CHANG C I. Fully constrained least squares linear spectral mixture analysis method for material quantifi- cation in hyperspectral imagery [ J ]. IEEE Trans. Geosci. Remote Sensing. , 2001,39(3 ) :529 - 545.
  • 5汤毅,万建伟,许可,王玲.地物空间分布特性的高光谱遥感图像解混算法[J].红外与毫米波学报,2014,33(5):560-570. 被引量:6
  • 6BAYLISS J, GUALTIERI J A, CROMP R. Analysing hy- perspectral data with independent component analysis [ C ], in Proc. SPIE, 1997, 3240 : 133 - 143.
  • 7BOARDMAN J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts [ C ]. In 4th Annual JPL Airborne Geo SeienceWorkshop . Pasadena: JPL Pub , 1993.
  • 8耿修瑞,张兵,张霞,郑兰芬.一种基于高维空间凸面单形体体积的高光谱图像解混算法[J].自然科学进展,2004,14(7):810-814. 被引量:21
  • 9HONEINE P, RICHARD C. Geometric unmixing of large hyperspectral images: A barycentric coordinate approach [J]. IEEE Trans. Geosci. Remote Sens. , 2012, 50(6) : 2185 -2195.
  • 10王立国,张晶,刘丹凤,王群明.从端元选择到光谱解混的距离测算方法[J].红外与毫米波学报,2010,29(6):471-475. 被引量:6

二级参考文献37

  • 1Adams J B,Smith M O,Johnson P E.Spectral mixture modeling:a new analysis of rock and soil types at the Viking Lander I site[J].J.Geophys.Res.1985,91(B8):8098-8112.
  • 2Winter M E.N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C].In Proc.SPIE Conf.Imaging Spectrometry V,1999,vol.3753:266-275.
  • 3Chang C I,Wu C C,Liu W M,et al.A new growing method for simplex-based endmember extraction algorithm[J].IEEE Trans.Geosci.Remote Sens.2006,44(10):2804-2819.
  • 4Winter E M,Winter M E.Autonomous hyperspectral end-member determination methods[C].In Proc.SPIE EUROPTO Conf.,1999,vol.3870.
  • 5Plaza A,Mart nez P,Pérez R,et al.Spatial/spectral endmember extraction by multidimensional morphological operations[J].IEEE Transactions on Geoscience and Remote Sensing.2002,40(9):2025-2040.
  • 6Keshava N,Mustard J F.Spectral unmixing[J].Signal Processing Magazine,IEEE,2002,19(1):44-57.
  • 7Suykens J A K,Brabanter J D,Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing.2002,48(1-4):85-105.
  • 8Vapnik V N.The nature of statistical learning theory[M].New York,Springer Press,1995.
  • 9Shimabukuro Y E, et al. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data.IEEE Transaction on Geoscience and Remote Sensing, 1991, 29(1): 16
  • 10Boardman J W. Autamating spectral unming of AVIRIS data using convex geometry concepts. In: 4th Annual JPL Airborne Geo Science Workshop. Pasadena: JPL Pub, 1993. 11

共引文献31

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部