期刊文献+

基于Landsat-8陆地卫星数据的火点检测方法 被引量:22

A method for fire detection using Landsat 8 data
下载PDF
导出
摘要 传统的火点检测算法通常利用高温地物在中红外波段或热红外波段的高发射率特性来提取火点,然而受制于影像空间分辨率的限制如MODIS、AVHRR等,使得很多小规模火情现象被漏检.研究发现短波红外数据也同样能被用于高温地物的识别和检测,并且相较于热红外波段数据对低温和高温地物的区分度更大,在精确识别和定位高温目标方面更加准确.文章利用空间分辨率为30米的Landsat-8 OLI传感器数据,根据高温火点在近红外及短波红外波段的波谱特性,利用改进的归一化燃烧指数(NBRS)结果自适应地确定阈值来提取疑似火点,然后再利用高温火点在短波红外的峰值关系进行误检点剔除,从而得到最终的火点产品.提出的算法能检测到所占像元面积10%左右的火点,并能够有效地排除云层及建筑物的干扰,在保证较低漏检率的同时还能达到90%左右的准确率,相比于传统算法的火点提取精度有很大的提高. Traditional fire detection methods use the high temperature emission characteristics in mid or thermal infrared bands of the M ODIS or AVHRR data to extract burning area. It is very hard for these methods to identify small fire regions such as sub-pixel due to the limitation of spatial resolution. Recently researchers have found that shortwave infrared( SWIR) data can also be used to identify and detect high temperature targets. Compared with the thermal infrared data,SWIR has a big discrimination against different features with different temperature. Thus it can identify accurately the location of high temperature targets. In this paper,we acquired fire point products by using Landsat-8 OLI data which has spatial resolution up to 30 m. The main procedure includes two steps. The improved Normalized Burning Ratio Short-wave( NBRS) is calculated at first to adaptively acquire suspected fire points based on the spectral characteristics of fire points in the near infrared and shortwave infrared. Then most false positive points are excluded based on the relationship between peak value in shortwave infrared band of fire points. This algorithm is capable of detecting the burning area around 10% in one pixel. With the premise of avoiding the interference of cloud and constructions,it can also keep a nearly 90% accuracy and lowmissing rate around 10%.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2016年第5期600-608,624,共10页 Journal of Infrared and Millimeter Waves
基金 中国科学院135突破项目~~
关键词 小火点 Landsat-8 短波红外 NBRS指数 自适应阈值 small fire region landsat-8 SWIR NBRS adaptive threshold
  • 相关文献

参考文献3

二级参考文献22

  • 1刘诚,李亚军,赵长海,阎华,赵洪淼.气象卫星亚像元火点面积和亮温估算方法[J].应用气象学报,2004,15(3):273-280. 被引量:49
  • 2孔祥生,苗放,刘鸿福,董宇阳.遥感技术在监测和评价土法炼焦污染源中的应用[J].成都理工大学学报(自然科学版),2005,32(1):92-96. 被引量:7
  • 3毛克彪,覃志豪,宫鹏,余琴.劈窗算法LST精度评价和参数敏感性分析[J].中国矿业大学学报,2005,34(3):318-322. 被引量:16
  • 4Giglio L, Descloitres J, Justice C O, et al. An enhanced contextual fire detection algorithm for MODIS [ J ]. Remote Sensing of Environment ,2003,87 ( 2-3 ) :273-282.
  • 5Giglio L, Kendall J D, Justice C O, et al. Evaluation of global fire detection algorithms using simulated AVHRR infrared data [ J ]. International Journal of Remote Sensing, 1999,20(10) : 1947-1985.
  • 6Giglio L, Csiszar I, Restas A, et al. Active fire detection and characterization with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [ J]. Remote Sensing of Environment,2008,112 ( 6 ) : 3055-3063.
  • 7Kaufman Y J, Justice C O, Giglio L, et al. Potential global fire monitoring from EOS-MODIS [ J ]. Journal of Geophysical Research, 1998,103 ( D24 ) :215-238.
  • 8Wang W T, Qu J J, Hao X J, et al. An improved algorithm for small and cool fire detection using MODIS data:A preliminary study in the southeastern United States [ J ]. Remote Sensing of Environment, 2007,108 ( 2 ) : 163 - 170.
  • 9Qian Y G, Yah G J, Duan S B, et al. A contextual fire detection algorithm for simulated HJ-1B imagery[ J]. Sensors,2009,9(2) :961-979.
  • 10Sehroeder W, Prins E, Giglio L, et al. Validation of GOES and MODIS active fire detection products using ASTER and ETM + data[J]. Remote Sensing of Environment,2008,112 ( 5 ) : 2711-2726.

共引文献43

同被引文献213

引证文献22

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部