期刊文献+

基于相异性阈值的改进自适应稀疏表示去噪算法

Modified adaptive sparse representation denoising algorithm based on difference threshold
下载PDF
导出
摘要 针对自适应稀疏表示去噪算法在对图像进行去噪时运行时间较长,得到结果过于平滑的问题,研究了基于相异性阈值的改进自适应稀疏表示去噪算法,在改进算法中,计算当前提取的图像块与前一个图像块之间的相异性度量,并与阈值进行比较,低于阈值则认为两者具有相同的稀疏表示向量和表示误差,不需要对当前块再执行计算从而减少运行时间,高于阈值则认为当前块包含了边缘区域,记录其位置,在重构去噪图像时予以保护,以减少图像边缘信息的损失.对毫米波图像的去噪实验结果证实了改进算法的有效性. In order to decrease the time and alleviate the smoothness of the adaptive sparse representation algorithm,a modified adaptive sparse representation algorithm based on difference threshold is introduced in this paper. This modified algorithm computes the difference between the current block and the previous one,then compares the difference with the threshold. When the difference is less than the threshold,the two blocks are considered having the same sparse representation vector and error. It is not needed to compute over current block again. When the difference is greater,they are considered as different. The current block contains the edge area and its position is recorded. It is then protected from averaging in reconstructing the result to alleviate the smoothness. The experimental results performed on millimeter-wave image demonstrated the effectiveness of the proposed method.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2016年第5期634-640,共7页 Journal of Infrared and Millimeter Waves
基金 总装备部预研基金(51305050102)~~
关键词 相异性阈值 改进 自适应稀疏表示 去噪 运行时间 边缘保护 difference threshold modified adaptive sparse representation denoising operation time edge protection
  • 相关文献

参考文献3

二级参考文献30

  • 1邹海林,隋亚莉,徐俊艳,宁书年.基于多小波变换的GPR图象去噪方法研究[J].系统仿真学报,2005,17(4):855-858. 被引量:16
  • 2郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪[J].光电工程,2006,33(6):73-77. 被引量:30
  • 3李迎春,孙继平,付兴建.基于小波变换的红外图像去噪[J].激光与红外,2006,36(10):988-991. 被引量:33
  • 4Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 5Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistic Association, 1995, 90(432): 1200-1224.
  • 6Donoho D L, Johnstone I M, Kerkyacharian G, Picard D. Wavelet shrinkage: asymptopia? Journal of Royal Statistical Society Series B, 1995, 57(2): 301-369.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425-455.
  • 8Xu Y S, Weaver J B, Healy D M, Lu J. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing, 1994, 3(6): 747-758.
  • 9Deshpande S D, Er M H, Venkateswarlu R, et al. Maxmean and max-median filters for detection of small targets [J]. Proc. SPIE,1999 ,3809:74-83.
  • 10Li J C, Shen Z K, Lan T. Detection of spot target in infrared clutter with morphological filter [ J ]. IEEE Aerospace and Electronics, 1996,1 : 168-172.

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部