期刊文献+

非重构压缩样值跳频信号时频联合估计算法 被引量:1

Time-Frequency Joint Estimation Algorithm for Frequency Hopping Signal with Unreconstructed Compressive Samplings
下载PDF
导出
摘要 针对宽带跳频信号的参数进行精确快速的估计,提出一种非重构压缩样值跳频信号时频联合估计算法。首先在非重构原始信号的前提下,通过研究信号的压缩数字特征,发现信号频率发生改变的位置,然后对该位置所在的数据段进行重构得到其频域系数,即可达到估计跳频频率、跳频周期以及跳频跳变时刻的目的。仿真结果表明,当信噪比为10d B,压缩比为1/4时,该算法估计出跳频信号的跳变时刻与Wigner算法达到相同误差条件下,所需处理的采样点个数为Wigner算法的1/4;比完全重构信号后估计算法误差小,所需重构的采样点个数为完全重构的1/4。该算法相对于传统的时频特征算法和基于压缩感知的完全重构估计算法,运算复杂度低,实时性较好。 In order to make a precise and quick estimation of the wide-band frequency-hopping signal, a time-frequercy joint estimation algorithm for frequency hopping signal with unreconstructed compressive samplings is proposed in this paper. First, the compressed numeral characteristics of the signal on the premise of non-reconstructing the original signal was studied to detect the hopping of signal frequency. Then, these data sections were reconstructed to get the frequency domain coeffi- cients. Estimations could be achieved with jump frequency, frequency hopping cycles and the frequency hopping moment based on the frequency domain coefficients. Simulation results show that this algorithm can achieve the same error conditions as Wigner algorithm when SNR is 10dB and compression rate is 1/4. The number of sampling points required for processing is 1/4 as the Wigner algorithm. The estimation error is smaller as the sampling points needed for reconstruction is 1/4 as the complete reconstruction algorithm. So this algorithm has the advantages of lower computation complexity and better real-time performance compared with the traditional time-frequency analysis algorithm and the estimation algorithm through complete reconstruction.
机构地区 信息工程大学
出处 《信息工程大学学报》 2016年第4期425-430,共6页 Journal of Information Engineering University
关键词 压缩感知 跳频信号 参数估计 压缩数字特征 compressed sensing frequency-hopping signal parameter estimation compressed numeral characteristics
  • 相关文献

参考文献11

  • 1Gabor D. Theory of communication [ J]. IEEE. Journal of the Institute of Electrical Engineers of Japan, 1946, 93 : 429-457.
  • 2Cohen L. Time-Frequency Analysis [ M ]. New Jersey: Prentice Hall, 1995.
  • 3Boashash B. Time-Frequency Signal Analysis and Pro- cessing: A Comprehensive Reference[ M ]. Oxford, UK : Elsevier Science, 2003.
  • 4Candies E. Compressive sampling[ C]//Proceedings of the International Congress of Mathematicians. 2006, 3: 1433-1452.
  • 5Donoho D L. Compressed Sensing[ J]. IEEE Trans. in- form. theory, 2006, 52(4) :1289-1306.
  • 6Yuan J, Tian P, Yu H. Subspace compressive frequency estimation of frequency hopping signal [ C ]//Wireless Communications, Networking and Mobile Computing. 2009 : 1-4.
  • 7张春磊,李立春,王大鸣.压缩域宽带跳频信号跳变时刻估计算法[J].太赫兹科学与电子信息学报,2015,13(1):122-129. 被引量:6
  • 8Tosic I, Frossard P. Dictionary learning[ C ]//IEEE Sig- nal Process. 2010:27-38.
  • 9Cand~s E J. The restricted isometry property and its im- plications for compressed sensing [J],Comptes Rendus Mathematique , 2008, 346(9): 589-592.
  • 10Chen S, Donoho D L. Examples of basis pursuit [ J]. Proceedings of SPIE-International Society for Optical Engineering, 1995, 2569:564-574.

二级参考文献9

  • 1TROPP J A;GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit,2007(12).
  • 2Candes, Emmanuel J.,Tao, Terence.Near-optimal signal recovery from random projections: Universal encoding strategies?IEEE Transactions on Information Theory,2006.
  • 3Candès, Emmanuel J.,Romberg, Justin,Tao, Terence.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory . 2006
  • 4Chen S,Donoho DL,Saunders MA.Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing . 1998
  • 5Candès E.Compressive sampling. Proceedings of International Congress ofMathematicians . 2006
  • 6Li Weidong,Wang Jing,Yao Yan.Synchronization design of frequency-hopping communication system. ICCT’’98 . 1998
  • 7Chen S,Donoho D.Basis pursuit. Signals, Systems and Computers,1994.1994 Conference Record of the Twenty-Eighth Asilomar Conference on . 1994
  • 8Davenport M,Wakin M,Baraniuk R.Detection and estimation with compressive measurements. Tech Rep TREE0610 . 2006
  • 9杜鑫.压缩感知在多源图像融合中的应用[J].太赫兹科学与电子信息学报,2013,11(4):614-618. 被引量:5

共引文献5

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部