期刊文献+

结核分枝杆菌热休克蛋白基因真核表达载体的构建及表达

Construction of eukaryotic expression vector for Mycobacterium tuberculosis heat shock protein X gene
原文传递
导出
摘要 目的构建结核分枝杆菌热休克蛋白X(heat shock protein X,HspX)基因与EGFP融合基因的真核表达载体p EGFP-N1-HspX,并在小鼠单核巨噬细胞RAW 264.7中表达。方法以结核分枝杆菌(H37Rv)基因组DNA为模板,PCR扩增HspX基因,定向插入至质粒p EGFP-N1的多克隆位点,经酶切及测序鉴定正确后,将质粒p EGFP-N1-HspX转染RAW264.7细胞,荧光显微镜下观察GFP的表达,Real-time PCR及Western blot法鉴定HspX基因的表达。结果质粒p EGFP-N1-HspX经酶切及测序鉴定,证明构建正确;质粒p EGFP-N1-HspX转染24 h后,荧光显微镜下可见GFP表达,表达的重组融合蛋白Flag-HspX相对分子质量约43 000;转染组细胞中HspX基因m RNA水平明显高于空载体组(P<0.01)。结论成功构建了p EGFP-N1-HspX融合基因真核表达载体,并在RAW264.7细胞中获得表达。 Objective To construct a eukaryotic expression vector for fusion protein of Mycobacterium tuberculosis(Mtb)heat shock protein X(HspX)and enhanced green fluorescent protein(EGFP), and express in RAW264. 7 cells. Methods HspX gene was amplified by PCR using the genome of Mtb H37 Rv as a template, and inserted into a multiple cloning site of eukaryotic expression vector p EGFP-N1. The constructed recombinant plasmid p EGFP-N1-HspX were identified by restriction analysis and sequencing, and transfected to RAW264. 7 cells. The expression of GFP was observed by fluorescence microscopy, while that of HspX by real-time PCR and Western blot. Results Restriction analysis and sequencing proved that recombinant plasmid p EGFP-N1-HspX was constructed correctly. The expression of GFP was detected in RAW264. 7 cells 24 h after transfection. The relative molecular mass of expressed Flag-HspX fusion protein was about 43 000. The HspX m RNA level in RAW264. 7 cells transfected with recombinant plasmid p EGFP-N1-HspX was significantly higher than that with empty vector(P〈0. 01). Conclusion Eukaryotic expression vector p EGFP-N1-HspX was constructed successfully, and Flag-HspX fusion protein was effectively expressed in RAW264. 7 cells.
机构地区 咸阳彩虹医院
出处 《中国生物制品学杂志》 CAS CSCD 2016年第10期1043-1046,共4页 Chinese Journal of Biologicals
关键词 结核分枝杆菌 热休克蛋白 基因 真核表达 Mycobacterium tuberculosis Heat shock protein Gene Eukaryotic expression
  • 相关文献

参考文献1

二级参考文献28

  • 1Biswas SK, Chittezhath M, Shalova IN, et al. Macrophage polariza-tion and plasticity in health and disease[ J]. Immunol Res, 2012,53(1 -3) : 11 -24.
  • 2Nathan C, Ding A. Nonresolving inflammation[ J]. Cell,2010,140(6): 871 -882.
  • 3Mantovani A,Sica A,Sozzani S, et al. The chemokine system in diverseforms of macrophage activation and polarization[ J]. Trends Immunol,2004,25(12) : 677 -686.
  • 4Mosser DM, Edwards JP. Exploring the full spectrum of macrophageactivation[ J]. Nat Rev Immunol, 2008, 8( 12) : 958 -969.
  • 5Briine B, Dehne N, Grossmann N, et al. RedoX control of inflam-mation in macrophages [ J]. Antioxid Redox Signal, 2013 Mar 6.[Epub ahead of print].
  • 6Bosschaerts T, Guilliams M, Stijlemans B, et al. Tip-DC develop-ment during parasitic infection isregulated by IL-10 and requiresCCL2/CCR2, IFN-gamma and MyD88 signaling [ J/OA ]. PLoSPathog, 2010,6(8) : el001045.
  • 7Zhu B, Kennedy JK, Wang Y, et al. Plasticity of Ly-6Chlmyeloidceils in T cell regulation [ J ] . J Immunol, 2011,187(5): 2418 -2432.
  • 8Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recrui-ted after skeletal muscle injuryswitch into antiinflammatory macropha-ges to support myogenesis[ J]. J Exp Med, 2007 , 204(5) : 1057 -1069.
  • 9Jenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage prolifera-tion, rather than recruitment from the blood, is a signature of TH2inflammation[ J]. Science, 2011,332(6035) : 1284 -1288.
  • 10Pourcet B,Pineda-Torra I. Transcriptional regulation of macrophagearginase 1 expression and its role in atherosclerosis [ J ]. Trends Card-iovasc Med, 2013 Jan 30. [ Epub ahead of print].

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部