期刊文献+

航空发动机无模型自适应生物智能控制方法研究

Aero-Engine Model Free Adaptive Intelligent Control Research
下载PDF
导出
摘要 针对航空发动机动态过程特性复杂、现有控制策略保守性较强的问题,在无模型自适应控制研究的基础上,结合生物内分泌智能控制原理,提出了一种新型无模型自适应生物智能控制(model free adaptive intelligent control,MFAIC)方法;首先根据航空发动机强非线性的特点,根据被控对象I/O数据建立了无模型自适应控制(model free adaptive control,MFAC)系统;然后创新地应用生物内分泌调节原理构建自适应控制模块(biological endocrine intelligent control,BEIC),目的是依据跟踪误差快速、准确地调整控制参数,从而自动优化控制效果;控制器设计完成后对MFAIC与PID这两种控制方法在动态过程中的控制效果及抗扰动能力进行对比分析;仿真结果表明,该无模型自适应生物智能控制方法具有全包线稳定和动态响应性能好、鲁棒性强的优点;且提出的生物内分泌调节新颖算法计算量合理,自适应调节能力强,具有较高的工程实践意义。 Since dynamic process of aero-engine always come up with tremendous complexity and controllers of engine in hand are too conventional, a new control strategy is designed based on Model-free Adaptive Control theory and Biological endocrine intelligent principle. First applying MFAC to engine model which is strong-nonlinearity; then based on Biological Endocrine Intelligent theory, project a self-regu- late system according to the error~ finally, compare IMFAC~ s results with conventional PID controller on controller~ s behaviors as well as ability to enduring turbulence. The simulation shows that MFAIC behaves quiet excellent dynamic response in full envelope.
出处 《计算机测量与控制》 2016年第10期104-107,共4页 Computer Measurement &Control
基金 国家自然科学基金面上项目(51476135)
关键词 航空发动机 无模型自适应控制 生物内分泌智能控制 动态性能 aero-engine MFAC BEIC property in dynamic process
  • 相关文献

参考文献12

  • 1Stueber T J, Vrnak D R, Le D K, et al. Control activity in support of NASA turbine based combined cycle (TBCC) research [J]. NASA/TM, 2010 (216109): 30-45.
  • 2Connolly J W, Csank J R T, Chicatelli A, et al. Model-based con- trol of a nonlinear aircraft engine simulation using an optimal tuner Kalrnan filter approach [J]. AIAA, 2013 (4002) : 22 - 27.
  • 3Farhy L S. Modeling of oscillations in endocrine networks with feedback [J]. Methods in Enzymology, 2004 : 54 - 81.
  • 4黄知鸷,丁永生,郝矿荣.基于肾上腺激素调控的IMFAC[J].计算机仿真,2014,31(3):363-366. 被引量:1
  • 5Connolly J W, Chicatelliy A, Gargz S. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach [J]. NASA/ TM, 2012: 1-5.
  • 6缑林峰,牛瑞芳,韩冰洁.基于满意滤波的自适应阈值算法[J].科学技术与工程,2012,20(30):7813-7816. 被引量:1
  • 7刘宝,丁永生.一种新颖的基于内分泌激素调控的智能控制器[J].计算机仿真,2006,23(2):129-132. 被引量:9
  • 8Simon D L, Armstrong J B, Garg S. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Mod- els[J]. NASA/TM, 2012 (217278), 78-88.
  • 9张静,缑林峰.航空发动机传感器故障鲁棒检测方法[J].计算机仿真,2012,29(2):32-35. 被引量:8
  • 10Culley D. ransition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded [J]. NASA/TM, 2010 (216806): 62-66.

二级参考文献24

  • 1李婷.非线性规划问题的单纯形算法[J].长春理工大学学报(高教版),2009(6):119-120. 被引量:2
  • 2刘宝,丁永生.一种新颖的基于内分泌激素调控的智能控制器[J].计算机仿真,2006,23(2):129-132. 被引量:9
  • 3侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592. 被引量:131
  • 4A S Willsky, H L Jones. A generalized Likelihood Ration Ap- proach to the Detection and Estimation of Jumps in Linear Systems [J]. 1976,21:108-112.
  • 5Ji Li, C W Chan, Zhang Hong - Yue. Asymptotic Local Approach in Fault Detection Based on Predictive Filters [ J ]. AIAA, 2005, 28(6) : 1112 -1122.
  • 6(英)Jie Chen,Ron J Patton著,吴建军译校.动态系统基于模型的鲁棒故障诊断[M].北京:国防工业出版社,2009.
  • 7Guang - Ren Duan. Right Coprime Factorization Using System Up- per Hessenberg Forms-- The Multi - input System case [ C ]. IEEE, 2000. 1960 - 1965.
  • 8Liang He, Pu Yan- Ming and Duan Guang - Ren. Multiobjective Control Synthesis Based on Parametric Eigenstructure Assignment [C]. IEEE, 2004. 1838-1841.
  • 9G R Duan. Parametric Eigenstructure Assignment for Linear Sys- tems subject to Input Saturation via State Feedback [ C ]. IEEE, 2005. 757 - 760.
  • 10Y S Ding and L H Ren.Fuzzy self-tuning immune feedback controller for tissue hyperthermia [C].Fuzzy IEEE 2000,The Ninth IEEE International Conference,7-10 May,2000,1:534-538.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部