期刊文献+

复杂背景下配电柜线号定位与识别方法研究

Study of Line Number Location and Recognition for Distribution Cabinet with Complex Background
下载PDF
导出
摘要 配电柜是动车组电气设备的关键设备之一,其中线缆的接线状态对电气设备的运行状态具有重大影响;传统的人工检测效率低,主观性强,配电柜背景复杂,光照条件恶劣,接线状态多样的特点,对线号识别造成较大的困难;针对配电柜的复杂情况提出了线号定位和分割的方法,首先利用基于尺度空间特征的SIFT算法实现线号定位,其次利用全局阈值和局部阈值进行分割,并进行角度校正和断裂字符修补,最后使用支持向量机(SVM)分类器进行线号识别,利用基于遗传算法的SVM参数优化方法;实现了对配电柜接线状态的识别,漏接识别率99.5%,错接识别率97.5%。 Distribution cabinet is a key equipment of the China Railway High-speed (CRH), and connection state has significant effects on the operation of the electrical equipment. Traditional artificial detection has low efficiency and strong subjectivity and distribution cabinet always with complex background, poor lighting conditions and diversity of connection state which makes line number recognition more diffi- cult. This paper presents a location and segmentation method of line number, first using SIFT algorithm based on scale space feature to lo- cate the number, then using global and local threshold to binarize the image, followed by angle correction and fracture character repair, finally using support vector machine (SVM) to recognize line number and optimize parameters using genetic algorithm. This paper realized the recognition of connection state in the distribution cabinet, and get 99.5% recognition rate for not connect and 97.5% for wrong connect.
作者 郑启亮
出处 《计算机测量与控制》 2016年第10期267-270,281,共5页 Computer Measurement &Control
关键词 接线状态 图像定位 图像分割 connection state image locationt image segmentation SVM
  • 相关文献

参考文献15

  • 1高强,余军,亢治虎.基于投影特征的简谱数字识别方法[J].软件导刊,2015,14(6):176-179. 被引量:3
  • 2张庚,李丹,周亮,等.基于交点特征提取的数字识别方法研究[J].电子技术应用,2015(z1).
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision. 2004, 60 (2): 91- 110.
  • 4Hauagge DC, Snavel N, Image matching using local symmetry lea lures [C]. Proceedings of IEEE Conference on Computer Vision and Patern Recognition. 2012: 206-213.
  • 5Otsu N. A threshold selection method from gray-level histograms [J]. IEEE transactions on systems, man and cybernetics, 1979, SMC-9 (1): 62-66.
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Com- puter Vision Graphics &Image Processing, 1985, 29 (3): 273 -285.
  • 7Kittler J, lllingworth J. On threshold selection using clustering cri- teria [J]. IEEE Transactions on Systems Man & Cybernetics, 1985, SMC-15 (5): 652-655.
  • 8Huang L K, Wang M J J. Image thresholding by minimizing the measures of fuzziness [J]. Pattern Reeognition, 1995, 28 (1): 41 -51.
  • 9Murthy C A, Pal S K. Fuzzy thresholding: mathematical frame- work, bound functions and weighted moving average technique. [J]. Pattern Recognition Letters, 1990, 11 (90): 197- 206.
  • 10White J M, Rohrer G D. Image Thresholding for Optical Character Recognition and Other Applications Requiring Character Image Ex- traction. [J]. Ibm Journal of Research : Development, 1983, 27 (4): 400-411.

二级参考文献17

  • 1邵平,杨路明,黄海滨,曾耀荣.基于积分图像的快速模板匹配[J].计算机科学,2006,33(12):225-229. 被引量:17
  • 2Basak J, Chanda B. On Edge and Line Linking with Conncctionist Model[J], IEEE Transaction. on Syst., Man, Cybernet 1994, 24(3):413 -428
  • 3Nevatia R. Locating Objects Boundaries in Textured Environments[J],IEEE Trans. on Comput., 1976, 25( 11 ): 1170- 1175.
  • 4Nalwa V S, Pauchon E. Edgel Aggregation and Edge Description[J],Comput. Vision,Graphics,Image Processing, 1987, 40( 1 ): 79 -94.
  • 5Liu S M, Lin W C, Liang C C, An Iteralivc Edge Linking Algorithm with Noise Removal Capability[C], Proc. of the 9^th International Conference on Pattern Recognition, 1988, 2:1120-1122.
  • 6Russ J C. The Image Processing Handbook[MI. Boca Raton: CRC Press, 1992.
  • 7Chen Y Y, Tai S C. Enhancing Ultrasund Images by Morphology Filter and Eliminating Ringing Effect[J]. European Journal of Radiology, 2005, 53(2): 293-305.
  • 8Petr D, Isabelle B, Michel C, et al. Topologically Controlled Segmentation of 3D Magnctic Resonance Images of the Head by Using Morphological Operators[J].Pattern Recognition,2003,36(10):2463-2478.
  • 9Jang B K. Chin R T. Analysis of Thinning Algorithms Using Mathematieal Morphology[J]. IEEE Trans. on Pattern Anal. and Machine Intell., 1990, 12(6): 541 -551.
  • 10Shih F Y, Vijayalakshmi G. Gelleral Sweep Mathematical Morphology[J]. Patrern Recognition, 2003, 36(7): 1489 -1500.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部