期刊文献+

基于格子Boltzmann方法的电流变液动力学建模及数值模拟 被引量:1

Dynamic modeling and numerical simulation of electro-rheological fluids based on Lattice Boltzmann Method
下载PDF
导出
摘要 电流变悬浮液内部结构对外电场的快速响应发生在指定的控制空间中,在这一特指的时间和空间尺度上电流变悬浮液的物理行为特征主要为剪切速率低和流动阻尼大,即Mach和Reynolds数一般不大,可以视为微尺度流动来加以研究。针对这一流动特征,基于介观动理论的格子Boltzmann方法,建立了电流变悬浮液两相流动的离散颗粒运动模型,通过该模型进行了动力学模拟,结果表明,该模型解决了分子动力学模型难以描述的因颗粒运动造成局部流场流变特性改变的难题,以及该流场双向耦合过程中对颗粒运动的影响。 Since the fast response of the internal structure of the electro-rheological(ER)suspension fluids occur in the controlled space(electrode distance is generally 1mm^2mm)of the applied electric field,where the main feature of the ER suspension fluids in the certain time and spatial scales is low shear rate but high flow resistance,which means the Mach number and the Reynolds number are generally small,it can be considered as micro-scale flow.According to this characteristic,the author proposed a discrete-particle-motion model of the ER suspension flows based on the Lattice Boltzmann Method(LBM)of the Mesoscopic kinetic theory.The results of the dynamic simulation showed that the model solved the problem of describing the changes of the rheological properties of some local flow fields and the influences on the particle movement during the two-way coupling in this flow field.
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第5期670-675,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51075345 11172100 51475402) 国家国际科技合作专项(2014DFA70170)资助项目
关键词 电流变效应 电流变悬浮液 微尺度流动 格子BOLTZMANN方法 electro-rheological effect electro-rheological suspensions micro-scale flow Lattice Boltzmann Method
  • 相关文献

参考文献4

二级参考文献73

  • 1郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2008.
  • 2Aidun, C. K., Lu, Y., & Ding, E. J. (1998). Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation.Journal of Fluid Mechanics, 373, 287-311.
  • 3Beetstra, R., van der Hoef, M, A., & Kuipers, J. A. M. (2007). Numerical study of segre- gation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations. Chemical Engineering Science, 62, 246-255.
  • 4Benyahia, S., Syamlal, M., & O'Brien, T. J. (2006). Extension of Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Pow- der Technology, 162, 166-174.
  • 5Bokkers, G. A., van Sint Annaland, M., & Kuipers, J. A. M. (2004). Mixing and segre- gation in a bidisperse gas-solid fluidized bed: A numerical and experimental study. Powder Technology, 140, 176-186.
  • 6Bouzidi, M., Firdaouss, M., & Lellemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids, 13, 3452-3459.
  • 7Derksen,J.J., van den Akker, H. E. A., & Sundaresan, S. (2008). Two-way coupled large- eddy simulations of the gas-solid flow in cyclone separators. AIChE Journal, 54, 872-885.
  • 8Fadlun, E. A., Verzicco, R., Orlandi, P., & Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations.Journal of Computational Physics, 161, 35-60.
  • 9Feng, Y. T., Han, K., & Owen, D. R. J. (2010). Combined three-dimensional lattice Boltzmann methods and discrete element method for modeling fluid-particle interactions with experiment assessment. International Journal for Numerical Methods in Engineering, 81,229-245.
  • 10Feng, Z.-G., & Michaelides, E. E. (2005). Proteus: A direct forcing method in the simulations of particulate flows.Journal of Computational Physics, 202, 20-51.

共引文献19

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部