期刊文献+

一维周期性梁结构等效性能计算方法讨论 被引量:1

Discussion of effective properties prediction methods for 1D periodic beam structure
下载PDF
导出
摘要 具有轴向周期微结构的复合梁结构,通常在宏观上简化为一维欧拉-伯努利梁。由于缺乏基于严格数学理论、同时考虑降维及均匀化的等效性能计算方法,已有研究或采用基于平截面假定的弯曲能量近似方法,或采用基于三维周期性介质等效性质的方法。本文首先介绍了基于一维周期性梁的渐近均匀化理论求解新方法,并在此基础上与上述两种方法进行比较。结果表明,基于平截面假定的近似方法忽视了这类梁结构内的三维应力状态,过高地估计了梁的等效性质。 The periodic composite beam with microstructure arranged along the axis is generally simplified to an Euler-Bernoulli beam in macro.Due to the lack of the method considering both the strict mathematical base and the dimension reduction and homogenization to calculating the effective stiffness,the bending energy approximate method based on the plane cross-section assumption or the asymptotic homogenization based on 3D periodic medium is usually utilized in the literature.In this paper,the method of asymptotic homogenization theory for one dimensional periodic beam is introduced and compared with the other two methods.The results indicate that the bending energy method overestimates the effective bending stiffness of the beam,because the three-dimensional stress state in the beam is neglected based on the plane cross-section assumption.
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第5期704-710,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(91216201) 国家重点基础研究发展计划(973计划)(2014CB049000)资助项目
关键词 渐近均匀化 等效刚度 周期性梁结构 尺寸因子 弯曲能量法 asymptotic homogenization effective stiffness periodic beam structure scale factor bending energy method
  • 相关文献

参考文献2

二级参考文献23

  • 1阎军,程耿东,刘书田,刘岭.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428. 被引量:25
  • 2Weihong Zhang,Gaoming Dai,Fengwen Wang,Shiping Sun,Hicham Bassir.Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures[J].Acta Mechanica Sinica,2007,23(1):77-89. 被引量:16
  • 3Hill, R.: A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213-222 (1965).
  • 4IShrlstensen, ll.M., Lo, K.H.: bolutions for ellectlve shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids 27, 315-330 (1979).
  • 5Kanit, T., Forest, S., Galliet, I., et al.: Determination of the size of the representative volume element for random compos- ites: statistical and numerical approach. International Journal of Solids and Structures 40, 3647-3679 (2003).
  • 6Hill, R.: The elastic behaviour of a crystalline aggregate. Pro- ceedings of the Physical Society. Section A 65,349-354 (1952).
  • 7Yan, J., Cheng, G.D., Liu, S.T., et al.: Comparison of predic- tion on effective elastic property and shape optimization of truss material with periodic microstructure. International Journal of Mechanical Sciences 48, 400-413 (2006).
  • 8Voigt, W.: On the relation between the elasticity constants of isotropic bodies. Ann. Phys. Chem. 274, 573-587 (1889).
  • 9Reuss, A.: Determination of the yield point of polycrystals based on the yield condition of sigle crystals. Z. Angew. Math. Mech. 9, 49-58 (1929).
  • 10Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Process in Periodic Media. Kluwer Academic Publ, Dordrecht (1989).

共引文献56

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部