期刊文献+

带阻尼项的一维等熵欧拉方程组的爆破解

Blowup of Solutions to 1-D Isentropic Euler Equations with Damping
下载PDF
导出
摘要 讨论了一维空间中带阻尼项的可压缩等熵欧拉方程组初值问题经典解的爆破.利用一维空间中欧拉方程组的局部解具有有限传播速度的性质,通过构造两类不同的泛函,证明当初始速度或初始动量的泛函足够大时,初值问题的经典解必定会在有限时间内爆破的结论. The blowup of classical solutions for the initial value problem of the compressible isentropic Euler equation with damping in 1-dimensional space is discussed.Utilizing local solutions with finite propagation speed of nature of the Euler equation in one dimensional space,by constructing two different types of functional,the classical solutions of the initial value problem is proved to be blown up in finite time when the initial functional associated with the velocity or momentum is large enough.
出处 《沈阳大学学报(自然科学版)》 CAS 2016年第5期415-419,共5页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(11161021 11561024 61472138 11561024) 江西自然科学基金资助项目(20151BAB201017)
关键词 阻尼 欧拉方程组 经典解 泛函 爆破 damping Euler equations classical solutions functional blowup
  • 相关文献

参考文献4

二级参考文献14

  • 1ZHU XUSHENG,WANG WEIKE.THE REGULAR SOLUTIONS OF THE ISENTROPIC EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING[J].Chinese Annals of Mathematics,Series B,2005,26(4):583-598. 被引量:18
  • 2Serge A.Blow up for nonlinear hyperbolic equations[M].Boston:Brikhuser Press.1995.
  • 3Liu Taiping,Yang Tong.Compressible euler equations with vacuum[J].J D Equations,1997,140:223-237.
  • 4Sideris T C.Formation of singularities in three-dimensional compressible fluids[J].Commun Phys,1985,101:475-485.
  • 5Kato T.The Cauchy problem for quasi-linear symmetric hyperbolic systems[J].Arch Rational Mech Anal,1975,58:181-205.
  • 6Sideris T C.Formation of singularities of solutions to nonlinear hyperbolic equations[J].Arch Ration Mech Anal,1984,86(4):369-381.
  • 7Evans L. Partial differential equations [M]. Probidence, Rhode Island: Amer Math Soc Graduate Studies in Math- ematics,2002.
  • 8Smoller J. Shock waves and reaction-diffusion equations[M]. 2nd ed. New York : Springger-Verlag, 1994.
  • 9Li T,Wang D. Blowup phenomena of solutions to the Eul- er equations for compressible fluid flow[J]. J Diff Eqns, 2006,221:91-101.
  • 10Liang Z. Blowup phenomena of the compressible Euler e- quations[J]. J Math Anal Appl, 2010,370: 506-510.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部