期刊文献+

求解线性互补问题的改进加速迭代方法 被引量:2

Modified Accelerated Splitting Iteration Method for Linear Complementarity Problem
下载PDF
导出
摘要 从基于模系数矩阵分裂迭代方法的演变方法出发,将收敛所需满足的条件一般化,提出了一种改进的加速分裂迭代方法.理论分析表明新方法可以和线性互补问题等价转换,将新方法与其他几种方法进行比较分析,给出了系数矩阵是H+-矩阵的收敛定理.最后,通过数值算例证明了提出的新方法在运算过程中需要更少的迭代步数和更短的运行时间. Based on evolution method of modulus-based matrix splitting iteration method, the convergence condition was generalized;a modified accelerated splitting iteration method was proposed.The new method can be proved to be equivalent to the linear complementarity problem theoretically and compared to other methods;a new convergence theorem with matrix was put forward.With numerical examples,the new method was proved to need less iteration step numbers and shorter running time.
作者 沈海龙 魏彤
机构地区 东北大学理学院
出处 《沈阳大学学报(自然科学版)》 CAS 2016年第5期420-424,共5页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(11071033)
关键词 线性互补问题 矩阵分裂 迭代方法 H-矩阵 收敛 linear complementarity problem matrix splitting iteration method matrix convergence
  • 相关文献

参考文献1

二级参考文献24

  • 1Black F, Scholes M. The pricing of options and corporate liabilities [J]. J Polit Econ, 1973, 81(3): 637-654.
  • 2Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options [J]. Review Financial Stud, 1993, 6(2): 327-343.
  • 3Glasserman P. Monte Carlo Methods in Financial Engineering [M]. New York: Springer-Verlag, 2004.
  • 4Grant D, Vora G, Weeks D. Path-dependent options: extending the Monte Carlo simulation approach [J]. Management Sci, 1997, 43(11): 1589-1602.
  • 5Avellaneda M, Wu L X. Pricing parisian-style options with a lattice method [J]. Int J Theoretical Appl Finance, 1999, 2(1): 1-16.
  • 6Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach [J]. J Financ Econ, 1979, 7(3): 229-263.
  • 7Rubinstein M. On the relation between binomial and trinomial option pricing models [J]. J Derivatives, 2000, 8(2): 47-50.
  • 8Brennan M J, Schwartz E S. The valuation of American put options [J]. J Finance, 1977, 32(2): 449-462.
  • 9Achdou Y, Pironneau O. Computational Methods for Option Pricing [M]. Philadelphia: SIAM, 2005.
  • 10Forsyth P A, Vetzal K R. Quadratic convergence for valuing American options using a penalty method [J]. SIAM J Sci Comput, 2002, 23(6): 2095-2122.

共引文献7

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部