摘要
针对标准Apriori算法在交通运行状态数据分析的应用中还存在数据处理缓慢、分析结果不精确等问题。本文提出了一种基于分布式Apriori算法的交通运行状态数据分析模型,首先通过使用Hash技术,除去那些不需要的候选项目集来减少候选集的势,以提高数据分析的处理速度,然后采用分布式的资源分布方式重新分配资源的权重,以对资源负载均衡进行优化,最终结合城市交通信息实际,构建运行状态数据分析模型。仿真实验结果表明,本文提出的改进算法相比较标准算法而言,在交通运行状态数据分析的应用中具有较高的精确性。
According to the slow data processing and the low accurate analysis of the standard Apriori algorithm in the data analysis of traffic running, a data analysis model of traffic running is proposed based on the distributed Apriori algorithm. First the unneeded candidate item set is removed to reduce the potential candidate set by Hash technology, in order to improve the processing speed of data analysis.Then the weight of resources is to redistribute by the way of distributed resource distribution, in order to optimize the resource load balancing. Finally, combined the reality of the urban traffic information, the data analysis model of running status is built. Simulations show that compared with standard algorithm,the proposed algorithm has higher accuracy in the traffic operation data analysis.
出处
《科技通报》
北大核心
2016年第10期202-206,共5页
Bulletin of Science and Technology
基金
河北省教育厅重点项目(No.ZD2015059)
唐山市科技局项目(NO.13130216Z)
关键词
城市交通
状态分析
数据挖掘
分布式优化
频繁项集
urban traffic
analysis of the state
data mining
distributed optimization
frequent item sets