期刊文献+

Self-organizing strategy design and validation forintegrated air-ground detection swarm

Self-organizing strategy design and validation for integrated air-ground detection swarm
下载PDF
导出
摘要 A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unmanned aerial vehicles (UAVs)and unmanned ground vehicles (UGVs). The UAVs can accessa detected object quickly for high mobility, while the UGVs cancomprehensively investigate the object due to the variety of carriedequipment. In addition, the integrated air-ground detectionswarm is capable of detecting from the ground and the air simultaneously.To accomplish the coordination of the UGVs andUAVs, they are all regarded as individuals of the artificial swarm.Those individuals make control decisions independently of othersbased on the self-organizing strategy. The overall requirements forthe detection swarm are analyzed, and the theoretical model ofthe self-organizing strategy based on a combined individual andenvironmental virtual function is established. The numerical investigationproves that the self-organizing strategy is suitable andscalable to control the detection swarm. To further inspect the engineeringreliability, an experiment set is established in laboratory,and the experimental demonstration shows that the self-organizingstrategy drives the detection swarm forming a close range and multiangularsurveillance configuration of a landing spot. A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unmanned aerial vehicles (UAVs)and unmanned ground vehicles (UGVs). The UAVs can accessa detected object quickly for high mobility, while the UGVs cancomprehensively investigate the object due to the variety of carriedequipment. In addition, the integrated air-ground detectionswarm is capable of detecting from the ground and the air simultaneously.To accomplish the coordination of the UGVs andUAVs, they are all regarded as individuals of the artificial swarm.Those individuals make control decisions independently of othersbased on the self-organizing strategy. The overall requirements forthe detection swarm are analyzed, and the theoretical model ofthe self-organizing strategy based on a combined individual andenvironmental virtual function is established. The numerical investigationproves that the self-organizing strategy is suitable andscalable to control the detection swarm. To further inspect the engineeringreliability, an experiment set is established in laboratory,and the experimental demonstration shows that the self-organizingstrategy drives the detection swarm forming a close range and multiangularsurveillance configuration of a landing spot.
作者 Meiyan An Zhaokui Wang Yulin Zhang Meiyan An Zhaokui Wang Yulin Zhang(School of Aerospace Engineering, Tsinghua University, Beijing 100084, China Astronaut Center of China, Beijing 100193, China)
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1018-1027,共10页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(11002076) the National High Technology Research and Development Program of China(863 Program)(2014AA7041002)
关键词 artificial swarm virtual potential field self-organizing integrated air-ground detection swarm. artificial swarm, virtual potential field, self-organizing,integrated air-ground detection swarm.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部