期刊文献+

黑土典型区有机质高光谱预测模型 被引量:6

Hyper spectral prediction model of organic matter in black soil region
下载PDF
导出
摘要 土壤有机质(SOM)是鉴别土壤肥力的重要指标,是土壤肥力的物质基础,其含量预测模型研究对于土壤肥力评价、土壤碳库估算、土壤资源利用与保护具有重要意义。该文以黑龙江省黑土带典型区为例,采集区域土壤样本,基于有机质含量与土壤反射率的定量关系,对光谱反射率进行一阶微分和倒对数的处理,建立偏最小二乘法模型(PLSR)、一元线性回归模型和多元线性逐步回归模型。结果表明:(1)土壤有机质敏感波段位于650-750nm。(2)通过比较建模样本与检验样本的决定系数(R2)和均方根误差(RMSE)的大小,得到反射率和倒对数处理后的数据最优模型都为PLSR模型,一阶微分处理后的最优模型为多元线性逐步回归模型。(3)PLSR模型的建模效果优于回归模型,但其预测效果却并不理想。该研究将为改进土壤理化参数、遥感反演、土地质量评价等工作方法提供理论与技术支持。 The study on spatial heterogeneity of soil organic matter (SOM) is significantly important to soil fertility evaluation, soil carbon pool estimation, soil resources utilization and protection. Based on Chernomyrdin typical area in I4eilongjiang province as an example, the soil samples in the area of acquisition, based on the quantitative relationship between organic matter content and soil reflectance, for first order differential spectral reflectance, logarithmic and remove abnormal numerical processing, establish a model of partial least squares (PLSR), a yuan hnear regression model and multiple hnear regression model. Results show that: (1) the sensitive wavelengths of organic matter in 650-750 nm. (2) by comparing the determination coefficient (R2) and the size of the root mean square error (RMSE), after processing the data of the optimal models for the PLSR model. The results can provide theoretical and technical support for improving RS retrieving of soil physic-chemical parameters, evaluating soil quality and carbon pool.
出处 《国土与自然资源研究》 2016年第4期73-76,共4页 Territory & Natural Resources Study
关键词 黑土 有机质 遥感 高光谱 预测模型 Black soil Organic matter Remote sensing Comprehensive practice course Predicting model
  • 相关文献

参考文献5

  • 1Ben-dor E, Banin A. Near-infrarod analysis as a rapid method to simultaneous ly evaluate several soil properties[J]. Soil Sci. Soc. Am. J., 1995(59): 364-372.
  • 2Mccarty G W, Reeves J B, Reeves V B, el al. Mid-infrared diffuse reflectance spectroscopy for soil carbon measurement [J]. Soil Sci. Soc. Am. J., 2002, 66(2): 640-646.
  • 3Galvao LS, Pizarro M A, Epipbanio J C N. Variations in reflectance of trnpical soils: spectral-chemical AVIRIS data [J]. Remote Sensing 245-255. composition relationships from of Environment, 2001, 75 (2):.
  • 4刘焕军,赵春江,王纪华,黄文江,张新乐.黑土典型区土壤有机质遥感反演[J].农业工程学报,2011,27(8):211-215. 被引量:56
  • 5吕秀琴,艾自兴.“地理信息系统课程设计”教学内容和模式探讨[J].实验技术与管理,2012,29(1):165-167. 被引量:15

二级参考文献35

共引文献69

同被引文献98

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部