期刊文献+

混响环境下基于倒谱BRIR的双耳互相关声源定位算法 被引量:2

Sound Source Localization Algorithm Based on Cepstral BRIR Binaural Cross-correlation in Reverberant Environment
下载PDF
导出
摘要 在实际封闭环境中,针对存在混响而导致声源定位性能下降的问题,提出一种基于倒谱双耳房间脉冲响应(Binaural room impulse response,BRIR)的双耳互相关声源定位方法.该方法通过从倒谱BRIR中减去混响分量,然后反变换到时域得到估计的脉冲响应,再与数据库中的头部脉冲响应(Head related impulse response,HRIR)进行互相关运算,最大互相关值相对应的位置就是所估计的声源位置.仿真实验结果表明,提出的算法能减少混响环境中带来的定位误差,提高声源定位的精度. In an actual closed environment, for the presence of reverberation causes sound source localization performance degradation, a sound source localization algorithm based on a cepstral binaural room impulse response(BRIR) binaural cross-correlation is proposed. The method is based on subtracting the reverberation component from the BRIR, and the estimated time domain impulse response is derived from the cepstral BRIR inverse transformation. Then by performing cross-correlation operation with the database HRIR(head related impulse response), the maximum cross-correlation value corresponds to the position corresponding to the estimated location of the sound source. Simulation results show that the proposed algorithm can reduce positioning errors caused by reverberation environment, and improve sound localization accuracy.
作者 张毅 颜博 王可佳 ZHANG Yi YAN Bo WANG Ke-Jia(School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065 School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065)
出处 《自动化学报》 EI CSCD 北大核心 2016年第10期1562-1569,共8页 Acta Automatica Sinica
基金 重庆市科学技术委员会项目(cstc2015jcyj BX0066)资助~~
关键词 声源定位 双耳互相关 倒谱 鲁棒性 Sound source localization binaural cross-correlation cepstral robustness
  • 相关文献

参考文献4

二级参考文献68

  • 1王景川,陈卫东,曹其新.基于全景视觉与里程计的移动机器人自定位方法研究[J].机器人,2005,27(1):41-45. 被引量:23
  • 2柳林,刘斐,季秀才,卢惠民,海丹,郑志强.全向移动机器人编队分布式控制研究[J].机器人,2007,29(1):23-28. 被引量:3
  • 3姜健,赵杰,李力坤.面向群智能机器人系统的声音协作定向[J].自动化学报,2007,33(4):385-390. 被引量:9
  • 4Zotkin D N, Duraiswami R, Davis L S. Rendering localized spatial audio in a virtual auditory space [J]. IEEE Transaction on. Multimedia, 2004, 6(4): 553-564.
  • 5Jin C, Corderoy A, et al. Contrasting monaural and interaural spectral cues for human sound localization [J]. Journal of Acoustical Society of America, 2004, 115(6): 3124-3141.
  • 6Tortes J C B, Petraglia M R. Tenenbaum R. A.. Low-order modeling and grouping of HRTFs for auralization using wavelet transform [A]. ICASSP 2004 [C]. 2004, 4: 33-36.
  • 7Shimada S, Hayashi N, Hayashi S. A clustering method for sound localization transfer functions [J]. Journal of the Audio Engineering Society, 1994, 42(7/g): 577-593.
  • 8Fahn C, LO Y. On the clustering of head-related transfer functions used for 3-D sound localization [J]. Journal of Information Science and Engineering, 2003, 19: 141-157.
  • 9Theodoridis S, Koutroumbas K. Pattern Recognition [M]. Academic Press, USA, 2003.
  • 10Gardner B, Martin K. HRTF measurements of a KEMAR dummy-head microphone [R]. Technical Report #280, MIT Media Lab Perceptual Computing, Cambridge, MA, 1994-05.

共引文献17

同被引文献8

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部