期刊文献+

基于自适应SUSAN各向异性扩散的红外弱小目标检测 被引量:1

Infrared Small Target Detection Based on Adaptive SUSAN-controlled Anisotropic Diffusion
下载PDF
导出
摘要 针对复杂背景下红外弱小目标提取困难的问题,提出了一种自适应SUSAN各向异性扩散的红外弱小目标检测算法。该算法结合SUSAN边缘检测算子与各向异性扩散,形成新的扩散方程对红外图像进行背景预测,与原图像差分后实现弱小目标检测。为使算法具备自适应能力,提出SUSAN边缘检测器灰度差阈值的自适应设定方法,采用绝对偏差中值算子作为其扩散系数。实验结果表明,该算法能够有效滤除复杂图像背景,大幅提升信噪比,同时保留目标大小。 To solve the difficult problem of acquiring the small target from infrared image, a new algorithm based on adaptive SUSAN-controlled Anisotropic Diffusion is proposed. The new algorithm combines the SUSAN edges detection algorithm and anisotropic diffusion so that a new diffusion equation is formed, which is used for predicting the background of the infrared image. After that the small targets are extracted from the residual picture between the original image and background image. To make an improvement of the adaptive ability of the new algorithm, a new way to set the limen of the SUSAN edge detector is proposed, and the median absolute deviation is used as the diffusion coefficients. The experiment demonstrates that the proposed algorithm is able to suppress the background of the image effectively, improve the SNR obviously and preserve the size of target accurately.
出处 《红外技术》 CSCD 北大核心 2016年第10期850-854,共5页 Infrared Technology
基金 陕西省自然科学基础研究计划资助项目(2012JM8020) 航空科学基金(20130196004)
关键词 SUSAN边缘检测 各向异性扩散 小目标检测 背景预测 红外图像 SUSAN edge detection anisotropic diffusion small target detection background prediction infrared image
  • 相关文献

参考文献3

二级参考文献19

  • 1顾静良,张卫,万敏.基于灰度形态学和邻域熵值的弱小目标检测[J].强激光与粒子束,2004,16(12):1527-1530. 被引量:22
  • 2冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2007.
  • 3Stavros Paschalakis,Miroslaw Bober.Real Time Face Detection and Tracking for Mobile Video Conferencing[J]. Real Time Imaging,2004,10(2):81-94.
  • 4Alexei A Efros,Alexander C Berg,Greg Mori,et al.Recognizing Action at a Distance[C].Intemational Conference on Computer Version(ICCV),2003.
  • 5Ostu N.A Threshold Selection Method from Gray Level Histograms. IEEE Transactions System Man and Cybemetics,1997,9(1):62-66.
  • 6Sergei L.Nonparametric methods for clutter removal[J].IEEE Trans on Aerospace and Electronic Systems,2001,37(3):832-848.
  • 7Tarun S,James R Z,Walter H K.Detection of point objects in spatially correlated clutter using two dimensional adaptive prediction filtering[C] //IEEE Conference Record of the Twenty-Sixth Asilomar Conference on Signals,Systems and Computers.1992:846-851.
  • 8Soni T,Zeidler J R.Performance evaluation of2-D adaptive predication filters for detection of small objects in image data[J].IEEE Trans on Aerospace and Electronic Systems,1993,2(3):327-340.
  • 9Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans on Pattern Anal Mach Intell,1990,12(4):629-639.
  • 10Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Trans on Image Processing,2004,13(4):600-612.

共引文献27

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部