期刊文献+

一类Duffing型p-Laplacian平均曲率方程周期解

Periodic Solutions for a Kind of Prescribed Mean Curvature Duffing-type p-Laplacian Equation with a Deviating Argument
下载PDF
导出
摘要 考虑了一类Duffing型p-Laplacian平均曲率方程周期解存在性问题.通过运用Mawhin重合度拓展定理和一些积分分析技巧,获得了此类平均曲率方程至少存在一个T-周期解.一个具体的数值例子充分说明了本文方法与结论的有效性.此外,用Matlab画出了其数值解图. Laplacian theory and results. In We investigate the existence of periodic solutions for a class of prescribed mean curvature Duffing-type pequation with a deviating argument. One T-periodic solution is devised by using the coincidence degree some integral analysis methods. A numerical example demonstrates the validity of the main method and addition, the numerical solution diagram is obtained by Matlab.
作者 陈文斌 董良 CHEN Wen-bin DONG Liang(School of Mathematics and Computer Science, Wuyi University, Wuyishan 354300, Chin)
出处 《烟台大学学报(自然科学与工程版)》 CAS 2016年第4期244-251,共8页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 福建省中青年教师教育科研项目(JA15524) 武夷学院青年教师科研项目(XQ201305)
关键词 周期解 平均曲率 重合度定理 Duffing型 P-LAPLACIAN方程 periodic solution prescribed mean curvature equation continuation theorem Duffing-type p-Laplacian equation
  • 相关文献

参考文献14

  • 1LI Weisheng,LIU Zhaoli.Exact number of solutions of a prescribed mean curvature equation[J].Math Anal Appl,2010,367(2):486-498.
  • 2ZHANG Xuemei,FENG Meiqiang.Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities[J].Math Anal Appl,2012,395(1):393-402.
  • 3BERGER M.On the Dirichlet problem for the prescribed mean curvature equation over general domains[J].Differ Geom APPL,2009,27:335-343.
  • 4LOPEZ R.A comparison result for radial solutions of the mean curvature equation[J].Appl Math Lett,2009,22:860-874.
  • 5OBERSNEL F,OMARI P.Positive solutions of the Dirichlet problem for the prescribed mean curvature equation[J].Differential Equations,2010,249(7):1674-1725.
  • 6BONHEURE D,HABETS P,OBERSNEL F,et al.Classical and non-classical solutions of a prescribed curvature equation[J].Differential Equations,2007,243:208-237.
  • 7FENG Meiqiang.Periodic solutions for prescribed mean curvature Liénard equation with a deviating argument[J].Nonlinear Anal Real Word Appl,2012,13(3):1216-1223.
  • 8LI Jin,LUO Jianlin,CAI Yun.Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument[J].Adv Differ Equ,2013,2013:88.
  • 9LI Zhiyan,AN Tianqing,GE Weigao.Existence of periodic solutions for a prescribed mean curvature Liénard p-Laplaceian equation with two delays[J].Adv Differ Equ,2014,2014:290.
  • 10WANG Dongshu.Existence and uniqueness of periodic solutions for prescribed mean curvature Rayleigh type p-Laplaceian equation[J].Appl Math Comput,2014,46(1):181-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部