期刊文献+

具有长圈的3-正则图的分解

Decomposition of Cubic Graphs with Long Cycles
原文传递
导出
摘要 在2011年,Hoffmann-Ostenhof提出如下猜想:每一个有n个顶点的3-正则图G的边集能分解成一个生成树、匹配和一系列圈.猜想被提出后引起图论学者极大关注.随后,多篇文献研究了这个猜想,得到了部分结果.其中,对于3-正则3-连通平面图、3-正则3-连通射影平面图以及3-正则Hamilton图等图类,这个猜想被证明是成立的,这些结果已分别发表在图论领域国际权威期刊上.本文证明:围长为(n-1)的3-正则图G的边集能分解成一个生成树、匹配和一系列圈.由我们的结果,可以直接导出3-正则Hamilton图,Hypohamilton图的如此分解. In 2011,Hoffmann- Ostenhof conjectured that if G is a connected cubic graph with n vertices,then the edge set of G can be decomposed into a spanning tree,a matching and a family of cycles. Many researchers immediately focused on the conjecture. Some literatures investigated it and have got some partial results. For 3-connected cubic plane graphs,3- connected cubic graphs on the projective plane and Hamilton cubic graphs,the conjecture is true,which have been published on some international key journals on graph theory. In this paper,it is proved that if G is a cubic graph with girth( n- 1),the conjecture is true,from which the decompositions of the Hamilton cubic graph and Hypohamilton cubic graph are easily deduced.
出处 《昆明理工大学学报(自然科学版)》 CAS 2016年第5期134-137,共4页 Journal of Kunming University of Science and Technology(Natural Science)
基金 中央高校基本科研业务费专项基金项目(NZ2015106)
关键词 3-正则图 图的边分解 HAMILTON图 Hypohamilton图 cubic graph decomposing edges of graph Hamilton graph Hypohamilton graph
  • 相关文献

参考文献3

二级参考文献126

  • 1魏二玲.辅助图与标号三元图的等价性[J].中国科学院研究生院学报,2004,21(4):451-453. 被引量:2
  • 2DiestelR.图论[M].于青林,王涛,王光辉,译.北京:高等教育出版社,2013.
  • 3Fritsch R,Fritsch G,Peschke J L.The Four-Color Theorem:History,Topological Foundations,and Idea of Proof[M〗.New York:Springer,1998.
  • 4Kempe A B.On the geographical problem of the four-colors[J].Amer J Math,1879(2):193-200.
  • 5Heawood P J.Map colour theorem[J].Quart J Pure Appl Math,1890,24:332-338.
  • 6Ringel G,Youngs J W T.Solution of the Heawood map-coloring problem[J].Proc Nat Acad Sci USA,1968,60:438-445.
  • 7Ringel G.Map Color Theorem[M].New York:Springer,1974.
  • 8Franklin P.A six color problem[J].J Math Phys,1934,13:363-369.
  • 9Dirac G A.Map colour theorem[J].Canad J Math,1952(4):480-490.
  • 10Dirac G A.Short proof of a map-colour theorem[J].Canad J Math,1957(9):225-226.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部