期刊文献+

氧化硅片表面配基疏水性及含量对蛋白质吸附行为的影响

Effects of Hydrophobicity and Content of Ligands on Silica Surface on Adsorption Behaviors of Proteins
原文传递
导出
摘要 采用双偏振极化干涉分析技术研究了氧化硅片表面配基疏水性及含量对蛋白质质吸附行为的影响,用3种不同疏水性配基3-(氨丙基)三乙氧基硅烷(APTES)、3-(N-甲氨基丙基)三甲氧基硅烷(MAPTMS)和3-(N,N-二乙基氨丙基)三甲氧基硅烷(DAPTMS)修饰氧化硅片,通过修饰时间控制硅片表面配基含量,研究了配基疏水性对牛血清白蛋白质(BSA)的影响和配基含量(N含量)对BSA、细胞色素C和糜蛋白酶吸附行为的影响.结果表明,BSA在疏水性最强的DAPTMS修饰的氧化硅表面吸附量及吸附动力学常数最大,分别为1.371 ng/mm2和0.056 s-1;DAPTMS含量对3种蛋白质吸附的影响与蛋白质疏水性密切相关,疏水性中等的BSA和细胞色素C为单分子层吸附,吸附量随N含量增加先增大后减小,N含量2.1%时吸附量最大,分别为16.9和60.2 nmol/m2.疏水性较强的糜蛋白酶为多分子层吸附,吸附量随N含量增大而减小,N含量1.1%时吸附量及吸附动力学常数分别为78.6 nmol/m2和0.040 s-1. The effects of hydrophobicity and ligand content on adsorption behaviors of proteins were investigated using dual polarization interferometry (DPI). The silica (DPI chip) surfaces were modified with 3-(aminopropyl) triethoxysilane (APTES), 3-(methacryloxy propyl) trimethoxysilane (MAPTMS) and 3-(diethylaminopropyl) trimethoxysilane (DAPTMS). The content of ligand on DPI chip was controlled by controlling modification time. The adsorption behaviors of bovine serum albumin (BSA), Cytochrome C and chymotrypsin on different surfaces were analyzed. The results indicated that the adsorption capacity of BSA on surface modified with DAPTMS was higher than that modified with APTES and MAPTMS. The adsorption capacity of BSA and adsorption kinetic constant were 1.371 ng/mm^2 and 0.056 s^-1, respectively. Ligand content affected protein adsorption, which is associated with protein hydrophobicity. BSA and Cytochrome C, as mid-hydrophobic model protein, formed a single layer on DPI surface. The adsorbed capacity of proteins climbs up and then declines with the increase of ligand content. The maximum adsorption capacity was 16.9 nmol/m^2 for BSA and 60.2 nmol/m^2 for Cytochrome C with N content as 2.1%. Chymotrypsin, as higher hydrophobic model, formed the multi-layer on DPI surface. The adsorption capacity and kinetic constant decrease with the density increases. The max adsorption capacity was 78.6 nmol/m^2 and the max kinetic constant was 0.040 s^-1 on DPI chip with N content as 1.1%.
作者 余瑾瑜 孔英俊 张焱 张竞 杨小雁 张贵锋 苏志国 王明林 YU Jin-yu KONG Ying-jun ZHANG Yan ZHANG Jing YANG Xiao-yan ZHANG Gui-feng SU Zhi-guo WANG Ming-lin(National Key Lab. Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China)
出处 《过程工程学报》 CAS CSCD 北大核心 2016年第5期774-780,共7页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:21306205) 国家高技术研究发展计划(863)基金资助项目(编号:2014AA022109)
关键词 蛋白质 吸附 配基 疏水性 配基含量 双偏振极化干涉 protein adsorption ligand hydrophobicity content of ligand dual polarization interferometry
  • 相关文献

参考文献23

  • 1李艺,程鎔时.蛋白质在固体表面吸附的研究进展[J].高分子通报,2007(3):41-49. 被引量:10
  • 2Rabe M, Verdes D, Seeger S. Understanding Protein Adsorption Phenomena at Solid Surfaces [J]. Adv. Colloid Interface Sci., 2011, 162(1): 87-106.
  • 3Lu D R, Park K. Effect of Surface Hydrophobicity on the Conformational Changes of Adsorbed Fibrinogen [J]. J. Colloid Interface Sci., 1991, 144(1): 271-281.
  • 4Anand G, Sharma S, Dutta A K, et al. Conformational Transitions of Adsorbed Proteins on Surfaces of Varying Polarity [J]. Langmuir, 2010, 26(13): 10803-10811.
  • 5Lu H L, Lin D Q, Gao D, et al. Evaluation of Immunoglobulin Adsorption on the Hydrophobic Charge-Induction Resins with Different Ligand Densities and Pore sizes [J]. J. Chromatogr. A, 2013, 1278(1): 61-68.
  • 6Mathe C, Devineau S, Aude J C, et al. Structural Determinants for Protein Adsorption/Non-adsorption to Silica Surface [J]. PLOS One, 2013, 8(11): e81346.
  • 7Hildebrand N, Koppen S, Derr L, et al. Adsorption Orientation and Binding Motifs of Lysozyme and Chymotrypsin on Amorphous Silica [J]. J. Phys. Chem. C, 2015, 119(13): 7295-7307.
  • 8Wiseman M E, Frank C W. Antibody Adsorption and Orientation on Hydrophobic Surfaces [J]. Langmuir, 2012, 28(3): 1765-1774.
  • 9Escorihuela J, Gonzalez-Martinez M A, Lopez-Paz J L, et al. Dual-polarization Interferometry: A Novel Technique to Light up the Nanomolecular World [J]. Chem. Rev., 2015, 115 (1): 265-294.
  • 10Crick C R, Bhachu D S, Parkin I P. Superhydrophobic Silica Wool-A Facile Route to Separating Oil and Hydrophobic Solvents from Water [J]. Sci. Technol. Adv. Mater., 2014, 15(6): 65003-65009.

二级参考文献69

  • 1滕智津,韩振为.分子动力学模拟在蛋白质固体表面吸附构象转变中的应用[J].化学工业与工程,2005,22(3):161-165. 被引量:1
  • 2Jamsen B.Curt Opin Infect Dis,1992,6:526.
  • 3Williams D,Ed.Concise Encyclopedis of Medical and Dental Materials.New York:Pergamon Press,1990.
  • 4Norde W,Lyklema J.J Colloid Interface Sci,1978,66:257.
  • 5Elwing H,Welin S,Askendal A.J Colloid Interface Sei,1987,119:203.
  • 6Tilton R D,Robertson C R.Langmuir,1991,7:2710.
  • 7Su T J,Lu J R,Thomas R K,Cui Z F.Langmuir,1998,14:438.
  • 8Horbett T A,Brash T A.Protein at Interfaces Ⅱ.ACS Symposium Series 602,Washington DC,1995.
  • 9Prime K L,Whitesides G M.Science,1991,252:1164.
  • 10Engel M F M,Mierlo C P M,Visser A J W G.J Biol Chem,2002,277(13):10922~10930.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部