期刊文献+

R125/R600a混合工质蒸发器结构优化

Evaporator Structure Optimization of R125/R600a Binary Refrigerant Blends
下载PDF
导出
摘要 为提高换热效率,从传热和压降的耦合角度出发,针对R125/R600a混合工质蒸发器建立了结构优化的理论数学模型,分析了管径、蒸发温度对管长优化结果的影响,并对理论模型进行验证。结果发现,R125/R600a混合工质蒸发器存在一最优管长,且最优长度随管径的增大而增加;随着蒸发温度的增大最优管长也呈现增大趋势。由此可见,小管径的蒸发器最优管长更短,结构更为紧凑,制造成本更低,而换热效率更高,同时制冷剂的流动摩擦阻力也会更小。研究结果对空调、冰箱、热泵系统的工质选用及运行工况的选择具有借鉴作用。 In order to improve energy utilization efficiency,this paper attempts to establish a tube structure optimization model for R125 / R600 a based on the coupling of heat transfer and pressure drop. The effects of evaporating temperature,tube diameter on the optimal tube length have been analyzed,and the theoretical model is verified. The results show that,for the smaller tube diameter evaporator,the optimal tube length is smaller,the structure is more compact,the heat transfer efficiency is higher,the weight is lighter,and flow resistance of both the refrigerant side and the cooling medium side are smaller. The optimal tube length increases with the increasing of evaporating temperature. Considering the impact of evaporating temperature, the optimal tube length has important practical significance of condenser structural optimization in air conditioners,refrigerators and heat pump systems( in different operating conditions).
作者 王方 范晓伟 连之伟 陈洁 付一珂 WANG Fang FAN Xiao-wei LIAN Zhi-wei CHEN Jie FU Yi-ke(School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou 450007, Chin)
出处 《实验室研究与探索》 CAS 北大核心 2016年第9期20-23,共4页 Research and Exploration In Laboratory
基金 国家自然科学基金项目(U1504501) 河南省高校青年骨干教师项目(2014GGJS-089)资助
关键词 R125/R600a 蒸发器 结构优化 R125/R600a evaporator structure optimization
  • 相关文献

参考文献2

二级参考文献17

  • 1杨一凡.氨制冷技术的应用现状及发展趋势[J].制冷学报,2007,28(4):12-19. 被引量:65
  • 2Jurgen Sub, Horst Kruse. Efficiency of the indicated process of CO2-compressor [J]. International Journal of Refrigeration, 1998, 21 (3) : 194-201.
  • 3Hubacher B, Groll E A. Measurement of performance of carbon dioxide compressors [R/OL]. http://www.arti-21 cr. org/research/completed/.
  • 4Mitsuhiro Fukuta, Radermacher R. Performance of a vane compressor for CO2 cycle [C]//4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue University, USA, 2000: 339-346.
  • 5Ali Kilicarslan, Norbet Muller. A comparative study of water as a refrigerant with some current refrigerants [J]. International Journal of Energy Research, 2005, 29 (11): 947-959.
  • 6Wight S E, Yoshinaka T, LeDrew B A, et al. The efficiency limits of water vapor compressors [R]. Report for Air-Conditioning and Refrigeration Technology Institute, 2000.
  • 7Brandon F, Lacher Jr, Gregory F, et al. The commercial feasibility of the use of water vapor as a refrigerant [J]. International Journal of Refrigeration, 2007, 30 (4): 699-708.
  • 8Granryd, E. Hydrocarbons as refrigerants-an overview [J]. International Journal of Refrigeration, 2001, 24(1): 15-24.
  • 9Sariibrahimoglu K, Kizil H, Aksit M, et al. Effect of R600a on tribological behavior of sintered steel under starved lubrication[J]. Tribology International, 2009, 43 (5-6) : 1054-1058.
  • 10Viraj Vithoontien. Turning Challenges into Achievements to Green the Chiller Sector in Article 5 Countries [C]// Proceedings of UNEP / ASHRAE-RAL Joint Conference, Cairo, Egypt, 2010.

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部