期刊文献+

多项式预测GNSS信号矢量跟踪算法 被引量:2

Polynomial prediction GNSS vector tracking algorithm
下载PDF
导出
摘要 提出了一种多项式预测全球卫星导航系统(GNSS)矢量跟踪算法,不需要接收机运动参数的先验信息,不同于传统卡尔曼滤波器需要根据目标的运动状态选择合适的动态模型并且调节相应的状态噪声。对观测噪声进行自适应估计,实现对目标状态更为鲁棒的跟踪。仿真结果表明,建立的矢量跟踪模型能够准确跟踪目标状态,适应各种加速度的目标运动情况,在加速度发生突变时,也能保持鲁棒的跟踪,有效避免了传统卡尔曼模型由于参数选择带来的问题。 A polynomial prediction Global Navigation Satellite System(GNSS) vector tracking algorithm is proposed, which is independent of the prior information of the receiver’s kinematic parameters. It is different from traditional Kalman filter which requires a proper dynamic model and adjusting its state noise according to the target’s kinematic status. The adaptive measurement noise estimation is also applied to guarantee a more robust tracking process. Numerical simulations validate that the algorithm proposed is able to track the target’s status accurately, and performs well in situations with different accelerations. It can also keep tracking when there occurs abrupt change in acceleration, thus avoiding the problems caused by traditional Kalman models which require proper parameter selections.
出处 《太赫兹科学与电子信息学报》 2016年第5期681-687,700,共8页 Journal of Terahertz Science and Electronic Information Technology
基金 国家自然科学基金资助项目(61571131)
关键词 矢量跟踪 多项式预测模型 矢量延迟/频率锁定环路 观测噪声估计 vector tracking polynomial prediction model Vector Delay/Frequency Lock Loop (VDFLL) observed noise estimation
  • 相关文献

参考文献4

二级参考文献41

  • 1姚洪利,高效,田科钰.基于衰减记忆n次新息的目标机动检测和排飞点[J].情报指挥控制系统与仿真技术,2004,26(5):25-29. 被引量:3
  • 2邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22
  • 3Li X R, Jilkov V P. Survey of maneuvering target tracking. Part Ⅰ: dynamic models[J]. IEEE Trans on Aero space and Electronic Systems, 2003,39(4):1333-1364.
  • 4Fitzgerald R J. Divergence of the Kalman filter[J].IEEE Trans on Automatic Control, 1971,16(6):736-747.
  • 5Pearson J, Goodall R, Eastham M, et al. Investigation of Kalman filter divergence using robust stability techniques [C] // Proceedings of the 36th IEEE Conference on Decision and Control. 1997, 5: 4892-4893.
  • 6Heinonen P, Neuvo Y. FIR median hybrid filters with predictive FIR substructures[J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1988, 36 (6) : 892-899.
  • 7Valiviita S, Ovaska S J, Vainio O. Polynomial predictive filtering in control instrumentation: a review[J].IEEE Trans on Industrial Electronics, 1999, 46(5): 876 -888.
  • 8Mazor E, Averbuch A, Bar Shalom Y, et al. Interacting multiple model methods in target tracking: a survey[J]. IEEE Trans on AES, 1998,34(1): 103 -123.
  • 9Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation: algorithms and software for information extraction[M]. New York: Wiley, 2001.
  • 10Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: when do we need the latter?[J]. IEEE Trans on Aerospace and Electronic Systems, 2003,39(4): 1452- 1457.

共引文献57

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部