期刊文献+

基于KL信息矩阵的动态加权选题策略

Dynamic Posterior-Weighted Selection Strategy Based on the KL Information Matrix
下载PDF
导出
摘要 在Henson和Douglas提出的KL信息矩阵(用D矩阵表示)基础上,借鉴后验加权的思想,将原始KL信息矩阵修正为后验加权KL矩阵,并基于认知诊断中项目区分度的计算方式,提出2种新的CD-CAT选题策略:DPWKL1和DPWKL2方法,在不同测验长度、不同诊断模型以及不同属性相关程度下,与传统PWKL方法进行了比较研究.模拟研究表明,不论实验条件如何变化,DPWKL1和DPWKL2方法的属性判准率及模式判准率均要优于PWKL方法. Based on the KL information matrix(denoted as D matrix)proposed by Henson and Douglas(2005),the posterior probabilities of the examinees'knowledge state were integrated into the D matrix,and then the double posterior-weighted D matrix could be built.Meanwhile this study introduced two highefficiency KL-based item selection algorithms named posterior-weighted cognitive diagnostic index(DPWKL1)and posterior-weighted attribute-level CDI(DPWKL2)by modifying the two item discrimination indexes,the cognitive diagnostic index(CDI)and the cognitive diagnostic attribute-level discrimination index(ACDI).To compare the two new methods with the PWKL method,this paper investigates the impact of three factors on both attribute correct classification rate(ACCR)and pattern correct classification rate(PCCR):(1)different cognitive diagnostic models(including two models:the DINA model and the fusion model);(2)different correlation among the attributes(including two levels:0and 0.5);(3)different test length(including three size:5,10,and 15items).In this paper,simulation study was conducted to investigate the efficiency of the DPWKL1 and DPWKL2methods.The results indicated that:Compare with the PWKL method,the two new methods had higher ACCR and PCCR values across all experimental conditions.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2016年第10期117-123,共7页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 认知诊断计算机化自适应测验 KL信息矩阵 选题策略 DINA模型 融合模型 cognitive diagnostic computerised adaptive testing KL information matrix item selection strategy DINA model fusion model
  • 相关文献

参考文献3

二级参考文献32

  • 1林海菁,丁树良.具有认知诊断功能的计算机化自适应测验的研究与实现[J].心理学报,2007,39(4):747-753. 被引量:21
  • 2Quellmalz E S, Pellegrino J W. Perspective technology and testing [J]. Science, 2009, 323(2): 75-79.
  • 3Tatsuoka K K. Rule space: an approach for dealing with miscon- ceptions based on item response theory [J]. Journal of Educationl Measurement, 1983, 20(4): 345-354.
  • 4de la Torre J. DINA model and parameter estimation: a didactic [J]. Journal of Educational and Behavioral Statistics, 2009, 34: 115-130.
  • 5Leihton J P, Gierl M J, Hunka S M. The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka's rule-space approach [J]. Journal of Education Measurement, 2004, 41(3): 205-237.
  • 6Xu Xueli, Chang Huahua, Douglas J. A simulation study to compare CAT strategies for cognitive diagnosis [EB/OL]. [2010-10-12]. http://www.psych.umn.edu/psylabs/catcentral/pdf%20files/xu03-01.pdf.
  • 7Cheng Ying.Computerized adatpive testing-new development and application [D]. Urbana-Champaign: Doctoral Disertation, University of Illionis, 2008.
  • 8杨智为,林佳桦,杨思伟,等.基于学生概念结构之适性测验演算法[C]//全国教育与心理统计与测量学术年会暨第八届海峡两岸心理与教育测验学术研讨会.云南:昆明,2008.
  • 9Tatsuoka KK(1995)Architecture of knowledge structure and cognitive diagnosis: A statistical pattern Recognition and classi-fication approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan(Eds.) Cognitively diagnostic assessment (pp.327-361). Hillsdale, N J; Erlbanm.
  • 10Chang Huahua,Ying Zhiliang. A-stratified multistage computerized adaptive testing [J]. Applied Psychological Measurement, 1999, 23: 211-222.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部