期刊文献+

基于混合神经网络(GANN)的沥青路面使用性能预测模型 被引量:5

Asphalt pavement performance prediction model based on hybrid artificial neural network
下载PDF
导出
摘要 针对GM模型要求的样本点少、不必有较好的分布规律,且计算量少、操作简便,而BP神经网络可以反馈校正输出的误差,具有并行计算、分布式信息存储、强容错力、自适应学习功能等特点,将GM(1,1)模型与BP神经网络模型相结合,建立了混合神经网络预测模型,并结合实例进行了检验性预测。结果表明:混合神经网络模型在预测精度方面优于传统灰色模型。该模型的算法概念明确、计算简便,有较高的拟合和预测精度,具有良好的应用前景。 The GM model has many advantages, with less calculation and easy operation. It needs neither larger sample points nor better regulate distribution. While the BP neural network can feedback the corrected output errors, it has the characteristics, such as parallel computation, distributed information storage, strong fault tolerance capability and learning adaptivity , et al. Thus a hybrid neural network prediction model is established, with the advantages from both GM (1 ,1 ) model and BP neural network model. It has been applied in test predictions with examples. The results showed that hybrid neural network model in forecast accuracy is better than the traditional gray model. The model algorithm with advantages of clear concept, simple calculation, a higher fitting and prediction accuracy, has good prospect of application.
出处 《桂林理工大学学报》 CAS 北大核心 2016年第3期521-525,共5页 Journal of Guilin University of Technology
基金 国家自然科学基金项目(41102229)
关键词 沥青路面 使用性能 GM模型 人工神经网络 混合神经网络模型 asphalt pavement performance GM model artificial neural network hybrid artificial neural net-work model
  • 相关文献

参考文献8

二级参考文献117

共引文献921

同被引文献53

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部