期刊文献+

PCA与K-SVD联合滤波方法的研究 被引量:1

Research on Combined Filtering Method of PCA and K-SVD
下载PDF
导出
摘要 针对早期的滤波方法,如线性的有高斯滤波、均值滤波、方框滤波等和非线性的如中值滤波、开闭运算等传统滤波方法是在像素级进行行列式的循环运算,运算繁琐,数据亢余和不能有效压缩图像进行数字化传播的缺点,提出一种基于PCA主成分图像融合后的K-SVD滤波方法的研究,有效弥补了单一K-SVD对椒盐噪声起不到良好滤波的缺点。首先对源图像进行多次的观测得到N幅含噪图像(既含有高斯噪声也含有椒盐噪声,都是加性噪声)。再对N幅含噪图像进行PCA主成分提取融合后进行K-SVD滤波(如果先进行K-SVD滤波的话会造成多幅图像的K-SVD的滤波,导致效率低且运算度冗余N倍)。这样有效消除了高斯噪声的干扰,还解决了K-SVD对椒盐噪声不敏感的缺陷,完成了在图像特征级数据去噪的研究。 For early filtering method, such as linear and nonlinear filtering, linear filtering includes Gaussian,mean and box filtering, nonlinear filtering includes median filtering and closed operation, which are determinant cy-cle operation at pixel level. According to the disadvantages of the traditional filtering methods mentioned of compli-cated calculation, data redundancy and image cannot be compressed effectively to perform digital transmission, aK-SVD filtering method based on principal component analysis(PCA) image fusion is proposed. And the disadvan-tages of single K-SVD such as without better filtering effect on salt and pepper noise is compensated effectively. Nframes of images with noise are obtained through observing the source image many times, which have Gaussian andsalt and pepper noise, both are additive noise. K-SVD filtering is performed after PCA extracting and fusing to Nframes of images with noise. If K-SVD filtering is performed before PCA, the K-SVD filtering of multi-frame imagesis produced, which will lead to low efficiency and N times of calculation redundancy. So Gaussian noise interferenceis eliminated effectively and the disadvantage of being not sensitive to salt and pepper noise of K-SVD is resolved.And the research on data denosing at image feature level is finished.
出处 《光电技术应用》 2016年第4期31-36,45,共7页 Electro-Optic Technology Application
关键词 PCA融合 K-SVD滤波 特征级图像去噪 principal component analysis(PCA) fusion K-SVD filtering feature level image denoising
  • 相关文献

参考文献2

二级参考文献14

  • 1Lin H M,Willson A N.Median filters with adaptive-length[J].IEEE CAS 1,1988; 35 (6): 675~690
  • 2Florencio D A F,Schafer R W.Decision-based median filter using local signal statistics[C].In:Prcc SPIE Symp Visual Comm Image Processing, Chicago, 1994; 2308: 268~275
  • 3Hardie R E,Barner K E.Rank conditioned rank selection filters for signal restoration[J].IEEE IP, 1994;3(2): 192~206
  • 4Abreu E ,Lightone M ,Mitra S K et al.A new efficient approach for the removal of impulse noise from highly corrupted images[J].IEEE IP, 1996;5(6): 1012~1025
  • 5Russo F,Ramponi G.A fuzzy filter with adaptive length[J].IEEE CAS1,1988;35(6) :675~690
  • 6Zhang D,Wang Z.Impulse noise detection and removal using fuzzy techniques[J].Electronics letters, 1997;33(5) :378~379
  • 7Kim V,Yaroslavskii L.Rank algorithms for picture processing[J].Comput Vision ,Graphics ,Image Processing, 1986;35 (2) :234~258
  • 8Mitra S K,Yu T H.A new algorithm for the removal of impulse noise from highly corrupted images[C].In:Proc IEEE CAS,London,1994;3:17~20
  • 9Ralph Sucher. An Adaptive Nonlinear Filter for Detection and Removal for Impulse
  • 10Rafael C Gonzalez,Richard E Woods. Digital Image Processing[M].Beijing:Publishing House of Electronics Industry,2003

共引文献25

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部