摘要
针对多孔金属纤维烧结板这一新型功能材料的多尺度形貌建模问题,基于机械加工表面微观形貌中存在的自仿射分形特性,拓展前期发展的三周期极小化曲面与Weierstrass-Mandelbrot分形几何快速合成方法,重点根据多孔金属纤维烧结板的结构特点,对Marching Cubes算法进行优化,以更高效地建立烧结板三维多尺度形貌的几何模型.同时,引入参数表征方法驱动分形TPMS对烧结板的形貌进行调整与控制.实例分析结果表明,所提出的方法可更有效地建立/控制多孔金属纤维烧结板的多尺度形貌模型;模型的有效性通过数值仿真和与其他方法的比较得到了验证.该建模方法可直接用于其他具有多尺度形貌的功能材料的数字化设计中,并促进其数值模拟技术的发展.
Porous metal fiber sintered felt is a type of new functional materials. This paper focuses on implementing the digital design of its multi-scale morphology. First, considering the self-affine fractal characteristics of the microtopography of machined metal surfaces, a previously developed mathematical method combining Weierstrass-Mandelbrot fractal geometry and triply periodic minimal surface is extended. In addition, the marching cubes algorithm is optimized according to the structure characteristics of sintered felt, so as to improve the efficiency of establishing its geometrical model. Meanwhile, a parameter representation method is introduced to drive the fractal TPMS model to adjust and control the morphology of sintered felt. The sample analyses warrant the higher efficiency of the proposed method and the ability of modeling and controlling multi-scale morphology of sintered felt. The effectiveness of the proposed model is also validated through numerical simulation and comparisons with other methods. The proposed approach can be directly used to describe the multi-scale morphology of other functional materials, thus facilitating the development of the corresponding numeric simulation technology.
作者
徐志佳
王清辉
李静蓉
XU Zhi-Jia WANG Qing-Hui LI Jing-Rong(School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China)
出处
《软件学报》
EI
CSCD
北大核心
2016年第10期2622-2631,共10页
Journal of Software
基金
国家自然科学基金(51505152
51275177)
中国博士后科学基金(2015M580719
2016T90780)
广东省自然科学基金(2016A030310409)
浙江大学CAD&CG国家重点实验室开放课题(A1508)~~
关键词
多孔金属纤维烧结板
多尺度形貌
周期曲面
分形几何
三维建模
功能材料
porous metal fiber sintered felt
multi-scale morphology
periodic surface
fractal geometry
three-dimensional modeling
functional material