期刊文献+

一类利用卷积定义的p叶解析函数类的系数边界 被引量:1

Coefficient Bounds for a Subclass of p-valent Analytic Functions by Convolution
下载PDF
导出
摘要 卷积是研究解析函数的有效工具,对于解析函数的系数研究起到很大的作用.利用卷积定义了一类在单位圆盘U={z∈C:|z|<1}内的p叶解析函数类MD^(δ,p)_(a,c)(λ,b,α,β),利用正实部函数族的系数性质,得到了它的全体系数边界,同时推广了一些常用的结论. Convolution is an effective tool to study analytic functions,which plays a significant role in the study of the coefficient of analytic functions. In this paper,a subclass MD(δ,p)(a,c)( λ,b,α,β) of p-valent analytic functions defined by convolution in the open disc U = { z ∈ C: | z | 1} is introduced. The aim of the paper is to study all coefficient bounds of the above class with coefficient properties of real part functions. Many known results are generalized.
作者 李静
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第5期686-690,共5页 Journal of Sichuan Normal University(Natural Science)
基金 湖北省教育厅规划课题(2014B354)
关键词 卷积 算子 系数 星象函数 凸函数 convolution operator coefficient starlike function convex function
  • 相关文献

参考文献7

二级参考文献77

  • 1蒋润荣.一个单叶解析函数族的推广[J].四川师范大学学报(自然科学版),1994,17(1):30-35. 被引量:1
  • 2高纯一.近于凸函数族的Fekete-Szegǒ问题[J].数学年刊(A辑),1994,1(6):650-656. 被引量:33
  • 3CHO N E, KIM I H, SRIVASTAVA H M. Sandwich-type theorems for multivalent functions associated with the Srivastava-Attiya operator [J]. Appl Math Comput, 2010, 217(2): 918-928.
  • 4WANG Zhi-gang, LI Qing-guo, JIANG Yue-ping. Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator [J]. Integral Transforms Spec Funct, 2010, 21(3): 221-234.
  • 5AOUF M K, SEOUDY T M. Some preserving subordination and superordination of analytic functions involving the Liu-Owa integral operator [J]. Comput Math Appl, 2011, 62(9) : 3575-3580.
  • 6SHANMUGAM T N, JEYARAMAN M P. On sandwich theorems for certain subclasses of analytic functions associated with Dziok-Srivastava operator [J]. Taiwan J Math, 2009, 13(6B):1949-1961.
  • 7LIU Jin-lin. Certain sufficient conditions for strongly starlike functions associated with an integral operator[J]. Bull Malays Math Sci Soc, 2011, 34(1): 21-30.
  • 8LIU Jin-lin, NOOR K I. Some properties of Noor integral operator [J]. J Nat Geom, 2002, 21(1/2): 81-90.
  • 9NOOR K I, NOOR M A. On integral operators [J]. J Math Anal Appl, 1999, 238(2) : 341-352.
  • 10NOOR K I. On new classes of integral operators [J]. J Nat Geom, 1999, 16(1/2): 71-80.

共引文献22

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部