期刊文献+

Electrochemical Properties of Tungsten-Alloying-Modified AISI 430 Stainless Steel as Bipolar Plates for PEMFCs used in Marine Environment 被引量:2

Electrochemical Properties of Tungsten-Alloying-Modified AISI 430 Stainless Steel as Bipolar Plates for PEMFCs used in Marine Environment
原文传递
导出
摘要 To improve the corrosion resistance and surface electrical conductivity of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs) used in marine environment, a tungsten alloying layer has been successfully prepared on 430 SS substrate via the plasma surface diffusion alloying technique. The tungsten- modified (W-modified) 430 SS displays a 7-8 Ixm tungsten alloying layer with a body-centered-cubic structure. The W-modified surface also shows a better hydrophobicity with contact angle of 93.5~ and a lower interfacial contact resistance compared with the untreated 430 SS. The potentiodynamic and potentiostatic polarization and electrochemical impedance spectroscopy measurements show that the corrosion resistance of 430 SS is obviously improved in simulated PEMFC environment (0.05 M H2SO4 + 2 ppm HF + 0.01 M NaC1 solution at 70℃), after the plasma surface diffusion alloying process. To improve the corrosion resistance and surface electrical conductivity of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs) used in marine environment, a tungsten alloying layer has been successfully prepared on 430 SS substrate via the plasma surface diffusion alloying technique. The tungsten- modified (W-modified) 430 SS displays a 7-8 Ixm tungsten alloying layer with a body-centered-cubic structure. The W-modified surface also shows a better hydrophobicity with contact angle of 93.5~ and a lower interfacial contact resistance compared with the untreated 430 SS. The potentiodynamic and potentiostatic polarization and electrochemical impedance spectroscopy measurements show that the corrosion resistance of 430 SS is obviously improved in simulated PEMFC environment (0.05 M H2SO4 + 2 ppm HF + 0.01 M NaC1 solution at 70℃), after the plasma surface diffusion alloying process.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期920-927,共8页 金属学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos. 51479019 and 21476035) Fundamental Research Funds for Central Universities (No. 3132014323)
关键词 Tungsten alloying layer Corrosion resistance Proton exchange membrane fuel cell Interfacial contact resistance Bipolar plates Tungsten alloying layer Corrosion resistance Proton exchange membrane fuel cell Interfacial contact resistance Bipolar plates
  • 相关文献

参考文献34

  • 1H.C. Wang, H.H. Sheu, C.E. Lu, K.H. Hou, M.D. Ger, J. Power Sources 293, 475 (2015).
  • 2M.C. Li, C.L. Zeng, H.C. Lin, C.A. Cao, Acta Metall. Sin. 38, 1287 (2002). (in Chinese).
  • 3R.J. Tian, J.C. Sun, L. Wang, Int. J. Hydrog. Energy 31, 1874 (2006).
  • 4H. Tsuchiya, O. Kobayashi, Int. J. Hydrog. Energy 29, 985 (2004).
  • 5R.P. Vera Cruz, A. Nishikata, T. Tsuru, Corros. Sci. 40, 125 (1998).
  • 6M. Sun, M. Luo, C. Lu, T.W. Liu, Y.P. Wu, L.Z. Jiang, J. Li, Acta Metall. Sin. (Engl. Lett.) 28, 1089 (2015).
  • 7Y. Tsutsumi, A. Nishikata, T. Tsuru, Corros. Sci. 49, 1394 (2007).
  • 8J. Xu, H.J. Huang, Z.Y. Li, S. Xu, H.L. Tao, P. Munroe, Z.H. Xie, J. Alloys Compd. 663, 718 (2016).
  • 9E.A. Cho, U.-S. Jeon, H.Y. Ha, S.-A. Hong, I.-H. Oh, J. Power Sources 125, 178 (2004).
  • 10X.Q. Yan, M. Hou, H.F. Zhang, F.N. Jing, P.W. Ming, B.L. Yi, J. Power Sources 160, 252 (2006).

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部