期刊文献+

两轮车姿态检测稳定性研究

Research on The Stability of Two-Wheeled Vehicle Attitude Detection
下载PDF
导出
摘要 姿态测量是两轮自平衡车控制系统设计的重要环节。由于单个传感器存在的精度低、易出现故障等缺点,不能获得精确的车身倾角值,两轮车的运动控制系统将无法正常工作。为提高两轮自平衡车姿态测量的准确性、稳定性和可靠性,采用多传感器姿态采集系统并设计了一种权值可调的分布式数据融合算法,根据各传感器参与融合作用的大小,计算出相应的融合系数,根据不同时刻传感器对车身倾角测量的精度变化更新融合权值,从而得到准确可靠的倾斜角度。实验结果表明,上述数据融合算法在两轮车平稳运行及动态调整过程中均能够获得准确的融合角度值,并能克服部分传感器异常的问题,对平衡车姿态测量稳定性有很大的保障。 Attitude detection is an important part of the design of the two- wheeled self- balancing vehicle control system. Due to the low accuracy of single sensor,the accurate body angle value cannot be obtained,and the control system will not work properly. A distributed data fusion algorithm is proposed,which is based on the different sensors to improve the accuracy,stability and reliability of the two- wheeled self- balancing vehicle attitude detection. According to the size of the fusion effect of each sensor,the corresponding fusion coefficient is calculated. According to the change of the accuracy of the sensor,fusion weights are updated. The experimental results show that the data fusion algorithm can obtain accurate fusion angle value and can overcome the problem of partial sensor anomaly,which can guarantee the stability of the attitude detection of the vehicle.
出处 《计算机仿真》 CSCD 北大核心 2016年第10期134-137,355,共5页 Computer Simulation
基金 国家自然科学基金(61164011) 江西省自然科学基金(20114BAB201023) 江西省博士后科研择优资助项目(2015KY19)
关键词 多传感器 分布式滤波 权值可调 自平衡车 Multi-sensors Distributed filtering Adjustable weights Self-balancing vehicl
  • 相关文献

参考文献9

  • 1王晓宇,闫继宏,臧希喆,秦勇,赵杰.两轮自平衡机器人多传感器数据融合方法研究[J].传感技术学报,2007,20(3):668-672. 被引量:11
  • 2D B Kingston,W Ren,R W Beard. Consensus algorithms are input - to - state stable [ C ]. Proceedings of the 2005 American Control Conference. Portland: IEEE,2005 : 1686 - 1690.
  • 3D Jakoveti d,J Xavier,J M F Moura. Weight optimization for con- sensus algorithms with correlated switching topology [ J ]. IEEE Transaction on Signal Processing ,2010,58 (7) : 3788 - 3801.
  • 4王帅,杨文,侍洪波.带丢包一致性滤波算法研究[J].自动化学报,2010,36(12):1689-1696. 被引量:27
  • 5L Xiao, S Boyd. Fast linear iterations for distributeted averaging [J]. Systems and Control Letters,2004,53( 1 ) :65 -78.
  • 61 Matei, J S Baras. Consensus -based linear distributed filtering [J]. Autornatiea,2012,48(8) : 1776 - 1782.
  • 7J B Gao, C J Harris. Some remarks on Kalman filters for the multi- sensor fusion, Information Fusion 3,2012 : 191 - 20.
  • 8段东立,武小悦.基于可调负载重分配的无标度网络连锁效应分析[J].物理学报,2014,63(3):39-49. 被引量:11
  • 9M A Demetriou. Natural consensus fihers for second order infinite dimensional systems [ J ]. Systems & Control Letters, 2009, 58 (12) : 826 -833.

二级参考文献64

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2Rao B S, Durrant-Whyte H F. Fully decentralised algorithm for multisensor Kalman filtering. IEE Proceedings D: Control Theory and Applications, 1991.138(5): 413-420.
  • 3Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
  • 4Fox V, Hightower J, Liao L, Schulz D, Borriello G. Bayesian filtering for location estimation. IEEE Pervasive Computing, 2003, 2(3): 24-33.
  • 5Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233.
  • 6Spanos D P, Olfati-Saber R, Murray R M. Dynamic consensus for mobile networks. In: Proceedings of the 16th IFAC World Congress. Pragae, Czech: IFAC, 2005. 1-6.
  • 7Spanos D P, Olfati-Saber R, Murray R M. Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Los Angeles, USA: IEEE, 2005. 133-139.
  • 8Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference. Seville, Spain: IEEE, 2005. 8179-8184.
  • 9Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 2007. 5492-5498.
  • 10Stankovic S S, Stankovic M S, Stipanovic D M. Consensus based overlapping decentralized estimation with missing observations and communications faults. Automatica, 2009, 45(6): 1397-1406.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部