期刊文献+

GO物理形态对复合光催化剂性能的影响 被引量:1

Influences of the physical state of the GO on the capacity of composite photocatalyst
下载PDF
导出
摘要 以钛酸四丁酯以及固态和液态的氧化石墨烯(GO)为前驱物,分别制备了标记为TiO_2-RGO(s)和TiO_2-RGO(l)的复合光催化剂。对制备的2种复合光催化剂进行了表征,并以亚甲基蓝(MB)为目标物,对比研究了2种催化剂的光催化效能。结果表明,TiO_2-RGO(l)和TiO_2-RGO(s)的能级带宽分别降低至2.8、2.9 e V;二者光降解MB的效能均优于TiO_2自身,且降解效率随着GO含量的增加而增加;当TiO_2与GO的质量比为1∶0.06时,TiO_2-RGO(l)和TiO_2-RGO(s)对MB的降解率分别为96%和84%。动力学研究表明:TiO_2-RGO(l)和TiO_2-RGO(s)的准一级反应速率常数分别是TiO_2的3.2倍和2.2倍。 Composite photocatalysts (TiOE-RGO (s) and TiO2-RGO (1)) have been prepared,respectively,using tetrabutyl titanate and solid state and liquid state graphene oxide (GO) as predecessors. Two kinds of prepared composite photocatalysts are characterized. Taking methylene blue (MB) as the target, the photoeatalytic effect of the two kinds of composite photocatalysts are compared and studied. The results show that the energy level broad bands of TiOE-RGO (1) and TiO2-RGO (s) are decreased to 2.8 eV and 2.9 eV ,respectively. The efficiency of both photo- degradation of MB are better than TiO2 itself. Furthermore,the degradation efficiency increases with the increase of GO content. When the mass ratio of TiO2 and GO is 1:0.06, the degradation rates of MB by TiO2-RGO (1) and TiO2- RGO (s) are 96% and 84% ,respectively. The kinetics research shows that the pseudo first-order reaction rate cons- tants of TiO2-RGO (1) and TiO2-RGO (s) are 3.2 and 2.2 times as much as TiO2, respectively.
出处 《工业水处理》 CAS CSCD 北大核心 2016年第10期67-71,共5页 Industrial Water Treatment
基金 江苏省环境科学与工程重点实验室开放课题(ZD131206) 苏州市分离净化材料与技术重点实验室项目(SZS201512) 苏州市水利水务科研课题(2015-7-1) 苏州科技学院科研基金项目(XKQ201503)
关键词 二氧化钛 氧化石墨烯 光催化 亚甲基蓝 TiO2 graphene oxide photocatalysis methylene blue
  • 相关文献

参考文献10

  • 1Tu Wenting, Lin Yipin, Bai Renbi. Removal of phenol in aqueous so- lutions by novel buoyant composite photocatalysts and the kinetics [J ]. Separation & Purification Technology, 2013,115 (2) : 180-189.
  • 2陈洪亮,王树林,夏立珍.石墨烯-氧化锌纳米棒复合材料的超声法制备及其光催化性能[J].功能材料,2014,45(6):97-101. 被引量:16
  • 3Zhang Yanhui ,Tang Zirong,Fu Xianzhi ,et al. TiO2-graphene nano- composites for gas-phase photocatalytic degradation of volatile aro- matic pollutant:Is TiO2-graphene truly different from other TiOz- carbon composite materials.'?[J]. Acs Nano,2010,4(12) :7303-7314.
  • 4Yang M Q, Zhang N, Xu Y J. Synthesis of fullerene-, carbon nano- tube-,and graphene-Ti02 nanocomposite photocatalysts for selective oxidation:A comparative study [J]. ACS Applied Materials & Inter- faces, 2013,5(3 ) : 1156-1164.
  • 5Liang Dayu, Cui Can, Hu Haihua, et aL One-step hydrothermal syn- thesis of anatase TiOJredueed graphene oxide nanoeomposites with enhanced photoeatalytic activity [J]. Journal of Alloys and Compo- unds, 2014,582 : 236-240.
  • 6裴福云,徐慎刚,刘应良,张丽,吕晶,路瑞娟,曹少魁.染料敏化二氧化钛-石墨烯杂化材料光催化水分解制氢[J].化工学报,2013,64(8):3062-3069. 被引量:18
  • 7Hummers W S, Offeman R E. Preparation of graphitic oxide [J ]. Journal of the American Chemical Society, 1958,80(6) : 1339.
  • 8Reyes-Coronado D, Rodriguez-Gattomo G,Espinosa-Pesqueira M E, et al. Phase-pure TiO2 nanoparticles :Anatase,brookite and futile [J]. Nanotechnology, 2008,19 (14) : 313-321.
  • 9Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. Acs Nano ,2010,4(8) :4806-4814.
  • 10Shen Jianfeng, Yan Bo, Shi Min, et al. One step hydrothermal syn- thesis of TiO2-reduced graphene oxide sheets [J]. Journal of Mate- rials Chemistry, 2011,21 ( 1 O) : 3415-3421.

二级参考文献37

  • 1WANG Shulin(Department of Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China).Impact chaos control and stress release——A key for development of ultra fine vibration milling[J].Progress in Natural Science:Materials International,2002,12(5):336-341. 被引量:40
  • 2彭峰,陈水辉,张雷,王红娟,谢志勇.纳米ZnO薄膜的制备及其可见光催化降解甲基橙(英文)[J].物理化学学报,2005,21(8):944-948. 被引量:24
  • 3WANG Shulin,LI Shengjuan,DU Yanchen,XU Bo,LI Laiqiang,ZHU Yan.Nanostructural evolution of Zn by dry roller vibration milling at room temperature[J].Progress in Natural Science:Materials International,2006,16(4):441-444. 被引量:41
  • 4Chen X B,Shen S H,Guo L J.Semiconductor-based photocatalytic hydrogen generation[J].Chem.Rev.,2010,110:6503-6570.
  • 5Liu G,Niu P,Yin L C,et al.α-Sulfur crystals as a visible-light-active photocatalyst[J].J.Am.Chem.Soc.,2012,134:9070-9073.
  • 6Ghows N,Entezari M H.Sono-synthesis of core-shell nanocrystal(CdS/TiO2)without surfactant[J].Ultrasonics Sonochemistry,2012,19:1070-1078.
  • 7Khnayzer R S,Thompson L B,Zamkov M.Photocatalytic hydrogen production at titania-supported Pt nanoclusters that are derived from surface-anchored molecular precursors[J].J.Phys.Chem.C,2012,116:1429-1438.
  • 8Youngblood W J,Lee anna S H,Maeda K.Visible light water splitting using dye-sensitized oxide semiconductors[J].Accounts of Chemical Research,2009,42(12):1966-1973.
  • 9Du J,Zhang H,Lü X J,et al.P25-graphene composite as a high performance photocatalyst[J].ACS Nano,2010,4(1):380-386.
  • 10Novoselov K S,Geim A K,Morozov S V.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.

共引文献32

同被引文献22

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部