摘要
若实对称矩阵可对角化,则存在正交矩阵,使其相似于对角矩阵,且正交矩阵的选取不是唯一的。探讨了实对称矩阵正交对角化过程中选取的正交矩阵之间的关系,并举例说明。
If a real symmetric matrix was diagonalizable, then there existed an orthogonal matrix which can make the real symmetric matrix similar to a diagonalization matrix, and the real symmetric matrix was not u-nique.We discussed the relationship between the orthogonal matrices in the process of orthogonal diagonalization of real symmetric matrix, and an example was given to explain it.
作者
鲁琦
刘钢
LU Qi LIU Gang(Department of Mathematics and Physics, Bengbu University, Bengbu 233030, China School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China)
出处
《佳木斯大学学报(自然科学版)》
CAS
2016年第5期834-836,共3页
Journal of Jiamusi University:Natural Science Edition
基金
安徽省数学与应用数学专业改革项目(2014zy141)
蚌埠学院工程化教学研究项目(2013gcjy17)
蚌埠学院自然科学研究一般项目(2015ZR10)
关键词
矩阵
对角化
正交矩阵
matrix
diagonalization
orthogonal matrix