期刊文献+

正相依风险下离散模型的最优分红 被引量:1

Optimal Dividend of Discrete Model with Positively Dependent Risks
原文传递
导出
摘要 将保险公司各期净损失相互独立的假定改进为依随机序正相依.在相依风险下,利用动态规划原理和状态空间约简,刻画了最优分红策略,证明了区域策略最优,同时讨论了值函数的性质,并给出了数值算法.其中,对涉及独立假定的结论,给出了相依条件下的相应结果,对未涉及独立假定的部分结论也做了改进.研究发现,与独立情形不同,在依随机序正相依风险下,保险公司不必以概率1破产. The independence assumption of net loss for each period of insurance company is improved to be positively dependent through the stochastic ordering.With dependent risks,applying the dynamic programming principle and state-space reduction,the optimal dividend strategies are characterized,the optimality of band policy is proved.In the meantime,the properties of value function are discussed,and the numerical algorithm is given.Where,for the conclusions involving independence assumption,the corresponding results under the dependence condition are given,and for parts of the conclusions not involving independence assumption,improvements are made.Research also finds that the insurance company need not ruin with probability 1 under the condition of positive dependence through the stochastic ordering,which is different from the situation of independence.
出处 《数学的实践与认识》 北大核心 2016年第18期20-31,共12页 Mathematics in Practice and Theory
基金 安徽省自然科学基金(1608085QG169) 安徽省高校优秀青年人才支持计划重点资助项目(gxyqZD2016104)
关键词 依随机序正相依 最优分红 区域策略 离散模型 破产概率 数值算法 PDS optimal dividend band policy discrete model ruin probability numerical algorithm
  • 相关文献

参考文献3

二级参考文献24

  • 1De Finetti, Su B. Un'impostazione Alternativa Dell Teoria Coltettiva del Rischio. Transactions of the XYth International Congress of Actraries, 1957, 2:433-443.
  • 2Buhlmann H. Mathematical Methods in Risk Theory. New York: Springer-Verlag, 1970.
  • 3Gerber H U. Mathematical Fun.with Compound Binomial Model. ASTIN Bulletin, 1988, 18, 161-168.
  • 4Bowers, N L, Gerber, H U, Hiekman, J C, Jones, D A, Nesbitt C J. Actuarial Mathematics. Society of Actuaries: Schaumberg, 1987.
  • 5Gerber H U, Shiu E S W. On the Time Value of Ruin. North American Actuarial Journal, 1998, 2: 48-78.
  • 6Wu R, Wang G J, Wei L. Joint Distributions of Some Actuarial Random Vectors Containing the Time of Ruin. Insurance: Mathematics and Economics, 2003, 33:147-161.
  • 7Cramer H., Collective Risk Theory: a Survey of the Theory from the Point of View of the Theory of Stochastic Process, Stockholm: Ab Nordiska Bokhandeln, 1955.
  • 8Seal H. L., Stochastic Theory of a Risk Business, New York: Wiley, 1969.
  • 9Segerdahl C. O., fiber einige risikotheoretische Fragestellungen, Skandinavisk Aktuarietidskrift, 1942, 25: 43-83.
  • 10Sundt B., Teugels J. L., Ruin estimates under interest force, Insurance: Mathematics and Economics, 1995 16: 7-22.

共引文献15

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部