期刊文献+

个人信用评分的Adaptive Lasso-Logistic回归分析 被引量:7

Analysis of Individual Credit Scoring Based on Logistic Regression with the Adaptive Lasso
原文传递
导出
摘要 以个人信用风险为研究对象,分析影响个人信用评分的因素.利用某商业银行个人信用数据,并采用.Adaptive Lasso-Logistic回归模型对影响顾客的个人信用风险的因素进行分析,并与传统Logistic回归模型以及Lasso-Logistic回归模型进行比较.以对顾客"好"与"坏"的二分类结果的正确比例为主要衡量标准,实证发现以.Adaptive Lassi-Logistic回归方法建立的个人信用评分模型,在变量选择和解释上,以及预测的准确性上,均优于传统的Logistic和Lasso-Logistic方法. In order to analysis the influencing factors of personal credit scoring,regarding the personal credit risk as the research object.A bank personal credit data was used,and the Adaptive Lasso-Logistic regression model was adopted to analysis the influencing factors of personal credit risk from consumers.What is more,we compare this model with the traditional Logistic model and the Lasso-Logistic model.Regarding the proportion of correct classification results of 'good' or 'bad' consumers as the main measure,the result comparing with the traditional Logistic regression model and Lasso-Logistic regression model,shows that using the adaptive Lasso-Logistic regression model to establish the personal credit scoring model is superior to the traditional Logistic model and Lasso-Logistic model on variable selection and variable explanation and prediction accuracy.
出处 《数学的实践与认识》 北大核心 2016年第18期92-99,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11571009)
关键词 个人信用评分 ADAPTIVE Lasso Lasso-Logistic LOGISTIC模型 personal credit scoring adaptive lasso lasso-logistic logistic model
  • 相关文献

参考文献4

二级参考文献42

  • 1范洁,杨岳湘.决策树后剪枝算法的研究[J].湖南广播电视大学学报,2005(1):54-56. 被引量:9
  • 2季桂树,陈沛玲,宋航.决策树分类算法研究综述[J].科技广场,2007(1):9-12. 被引量:40
  • 3Hunt E B, Krivanek J. The effects of pentylenetatrazole and methyl-phenoxy propane on discrimination learning[J]. Psychopharmacologia, 1966(9): 1-16.
  • 4Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986(4): 81-106.
  • 5Quinlan J R. C4.5: Programs for machine learning[J]. Morgan Kaufman, 1993: 81-106.
  • 6Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining[C]//Proc Int Conf Extending Database Technology, Avignon, France, 1996: 18-32.
  • 7Shafer J, Agrawal R. A scalable parallel classifier for data mining[C]//Proc 1996 Int Conf Very Large Data Bases Bombay, India, 1996: 544-555.
  • 8Rastogi R, Shim K. Public: A decision tree classifier that integrates building and pruning[C]//Proc 1998 Int Conf Very Large Data Bases, New York, 1998: 404-415.
  • 9Quinlan J R."C5" [EB/OL). http://rulequest.com, 2007.
  • 10Quinlan J R. Bagging, boosting, and C4.5[C]//Proc of 14th National Conference on Artificial Intelligence, Portland, Oregon, 1996: 725-730.

共引文献107

同被引文献65

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部