期刊文献+

异构云环境下基于分簇的云资源感知任务调度方案 被引量:6

Task scheduling scheme based on clustering in heterogeneous cloud computing platform
下载PDF
导出
摘要 针对提高异构云平台中资源调度的效率,提出了一种基于任务和资源分簇的异构云计算平台任务调度方案。利用K-means算法,根据任务的CPU和I/O处理时间对任务分簇,根据资源的计算能力对资源分簇;然后,将任务簇对应到合适的资源簇,并利用最早截止时间优先(EDF)算法对任务簇中的独立任务进行调度,利用提出的改进型最小关键路径(MCP)算法对依赖性任务进行调度。实验结果表明,在资源异构的云计算环境中,该方案执行任务时间短、能耗低。 To improve the efficiency of resource scheduling in heterogeneous cloud platform, a task scheduling scheme based on task and resource clustering in heterogeneous cloud computing platform was proposed. First, clustered the tasks according to the CPU and I/0 processing time of tasks with the K-means, and clustered the resources according to the computing power of resources; then, it made the task cluster corresponding to the appropriate resource cluster, and the earliest deadline first (EDF) algorithm was used for the independent task scheduling, and the improved minimal critical path (MCP) algorithm was used for dependent task scheduling. Experimental results show that in the cloud computing environment with heterogeneous re- sources the proposed scheme takes more short time and consume lower energy during the task execution.
出处 《计算机应用研究》 CSCD 北大核心 2016年第11期3422-3425,共4页 Application Research of Computers
基金 广东省科技计划资助项目(2014A010103032,2014A010103002) 广东省产学研专项基金资金项目(2013B011301003) 东莞市产学研合作项目(2014509102211) 东莞职业技术学院政校行企项目(政201607)
关键词 异构云计算平台 任务调度 分簇 K-MEANS算法 最早截止时间优先 最小关键路径 heterogeneous cloud computing platform task scheduling clustering K-means algorithm earliest deadline first modified critical path
  • 相关文献

参考文献16

二级参考文献74

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2王菁,张利永,韩燕波.Client-Centric Adaptive Scheduling of Service-Oriented Applications[J].Journal of Computer Science & Technology,2006,21(4):537-546. 被引量:4
  • 3韩燕波,王洪翠,王建武,闫淑英,张程.一种支持最终用户探索式组合服务的方法[J].计算机研究与发展,2006,43(11):1895-1903. 被引量:15
  • 4LinC, Lu S Y, Fei X B, Chebotko A, Pai D, Lai Z Q, Fotouhi F, Hua J. A reference architecture for scientific workflow management systems and the view soa solution. IEEE Transactions on Service Computing, 2009, 2(1): 79-92.
  • 5Ren K J, Chen J J, Xiao N, Song J Q. Building quick service query list (QSQL) to support automated service discovery for scientific workflow. Concurrency and Computation: Practiee Experience, 2009, 21(16): 2099-2117.
  • 6Weiss A. Computing in the cloud. ACM Networker, 2007, 11:18-25.
  • 7Chervenak A, Deelman E, Livny M, Su M H, Schuler R, Bharathi S, Mehta G, Vahi K. Data placement for scientific applications in distributed environments//Proceedings of the8th IEEE/ACM International Conference on Grid Compu- ting. Washington, USA, 2007:267-274.
  • 8Singh G, Vahi K, Ramakrishnan A, Mehta G, Deelman E, Zhao H N, Sakellariou R, Blackburn K, Brown D, Fairhurst S, Meyers D, 13erriman G. 13, Good J, Katz D S. Optimizing workflow data footprint. Scientific Programming, 2007, 15(7) : 249-268.
  • 9DuZH, HuJK, ChenYN, ChengZL, WangXY. Opti- mized QoS-aware replica placement heuristics and applica- tions in astronomy data grid. The Journal of Systems and Software, 2011, 84(7): 1224-1232.
  • 10Fedak G, He H, Cappello F. BitDew.- A programmable environment for large-scale data management and distribu- tion//Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Austin, USA, 2008:1-12.

共引文献133

同被引文献41

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部